[PDF]    https://doi.org/10.3952/physics.2024.64.2.4

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 107–121 (2024)

MECHANICAL PROPERTIES OF 17-4PH STAINLESS STEEL AT VARIOUS LASER SINTERING PROCESS PARAMETERS
Ada Steponavičiūtėa, Karolis Stravinskasa, Aušra Selskienėa, Jurijus Tretjakovasb, Ričardas Petkusa, and Genrik Mordasa
a Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
b Vilnius Gediminas Technical University, Saulėtekio 11, 10223 Vilnius, Lithuania
Email: ada.steponaviciute@ftmc.lt

Received 11 January 2024; revised 15 February 2024; accepted 22 February 2024

As a material for conventional manufacturing, iron and its alloys had been an object of numerous studies in the past and, as a result, steel became one of the best-known metal alloys in industry. However, new manufacturing technologies, such as additive manufacturing (AM), open new possibilities for the same materials. In this paper, we investigate stainless steel powder for additive manufacturing technologies and parts fabricated from it. Powder chemical composition and morphology are presented in the study. The influence of laser power and laser scanning speed on the mechanical properties of materials and microstructure was studied, and the experimental results showed the optimal energy density values between 50 and 65 J/mm3. However, the value of energy density varies depending on which parameters are observed, i.e. the optimum energy density value is different for the ultimate tensile stress (UTS) and surface roughness or the Young’s modulus and hardness.
Keywords: additive manufacturing, mechanical properties, microstructure, stainless steel, metal powder

17-4PH NERŪDIJANČIOJO PLIENO MECHANINĖS SAVYBĖS ESANT ĮVAIRIEMS SUKEPINIMO LAZERIU PROCESO PARAMETRAMS
Ada Steponavičiūtėa, Karolis Stravinskasa, Aušra Selskienėa, Jurijus Tretjakovasb, Ričardas Petkusa, Genrik Mordasa

a Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Praeityje geležis ir jos lydiniai, kaip įprastinės gamybinės medžiagos, buvo daugelio tyrimų objektas, dėl to plienas tapo vienu geriausiai žinomų metalo lydinių pramonėje. Tačiau naujos technologijos, tokios kaip adityvioji gamyba, atveria naujas galimybes naudoti tokias pačias medžiagas. Šiame straipsnyje nagrinėjama nerūdijančio plieno milteliai, skirti adityviosios gamybos technologijoms, ir iš jų pagamintos detalės. Tyrime pateikiama miltelių cheminė sudėtis ir morfologija. Buvo ištirta lazerio galios ir skenavimo greičio įtaka medžiagų mechaninėms savybėms ir mikrostruktūrai, o eksperimentiniai rezultatai parodė, kad optimalus energijos tankis yra 50–65 J/mm3. Tačiau energijos tankio vertė skiriasi priklausomai nuo to, kokie parametrai stebimi, t. y. optimali energijos tankio vertė skiriasi, pavyzdžiui, stiprumo ribos ir paviršiaus šiurkštumo arba Jungo modulio ir kietumo atveju.


References / Nuorodos

[1] E. Chlebus, B. Kuźnicka, T. Kurzynowski, and B. Dybała, Microstructure and mechanical behaviour of Ti–6Al–7Nb alloy produced by selective laser melting, Mater. Charact. 62(5), 488–495 (2011),
https://doi.org/10.1016/J.MATCHAR.2011.03.006
[2] I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, Single track formation in selective laser melting of metal powders, J. Mater. Process. Technol. 210(12), 1624–1631 (2010),
https://doi.org/10.1016/J.JMATPROTEC.2010.05.010
[3] J.P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, and M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyp. J. 11(1), 26–36 (2005),
https://doi.org/10.1108/13552540510573365
[4] D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser additive manufacturing of metallic components: Materials, processes and mechanisms, Int. Mater. Rev. 57(3), 133–164 (2012),
https://doi.org/10.1179/1743280411Y.0000000014
[5] Springer Handbook of Mechanical Engineering, eds. K.-H. Grote and E.K. Antonsson (Springer, 2009),
https://doi.org/10.1007/978-3-540-30738-9
[6] L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies, J. Mater. Sci. Technol. 28(1), 1–14 (2012),
https://doi.org/10.1016/S1005-0302(12)60016-4
[7] Y. Tang, H.T. Loh, Y.S. Wong, J.Y.H. Fuh, L. Lu, and X. Wang, Direct laser sintering of a copperbased alloy for creating three-dimensional metal parts, J. Mater. Process. Technol. 140(1–3), 368–372 (2003),
https://doi.org/10.1016/S0924-0136(03)00766-0
[8] G.A. Ravi, X.J. Hao, N. Wain, X. Wu, and M.M. Attallah, Direct laser fabrication of three dimensional components using SC420 stainless steel, Mater. Des. 47, 731–736 (2013),
https://doi.org/10.1016/j.matdes.2012.12.062
[9] C. Yan, L. Hao, A. Hussein, P. Young, J. Huang, and W. Zhu, Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering, Mater. Sci. Eng. A 628, 238–246 (2015),
https://doi.org/10.1016/j.msea.2015.01.063
[10] H.H. Alsalla, C. Smith, and L. Hao, The effect of different build orientations on the consolidation, tensile and fracture toughness properties of direct metal laser sintering Ti-6Al-4V, Rapid Prototyp. J. 24(2), 276–284 (2018),
https://doi.org/10.1108/RPJ-04-2016-0067
[11] A. Barazanchi, K. Li, B. Al-Amleh, K. Lyons, and J. Waddell, Mechanical properties of laser-sintered 3D-printed cobalt chromium and soft-milled cobalt chromium, Prosthesis 2(4), 313–320 (2020),
https://doi.org/10.3390/prosthesis2040028
[12] A. Yadollahi, N. Shamsaei, S.M. Thompson, and D.W. Seely, Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel, Mater. Sci. Eng. A 644, 171–183 (2015),
https://doi.org/10.1016/j.msea.2015.07.056
[13] J. Delgado, J. Ciurana, and C.A. Rodríguez, Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials, Int. J. Adv. Manuf. Technol. 60(5–8), 601–610 (2012),
https://doi.org/10.1007/s00170-011-3643-5
[14] E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato, Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel, J. Mater. Process. Technol. 249, 255–263 (2017),
https://doi.org/10.1016/j.jmatprotec.2017.05.042
[15] L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V, Acta Mater. 58(9), 3303–3312 (2010),
https://doi.org/10.1016/j.actamat.2010.02.004
[16] J.H. Yi, J.W. Kang, T.J. Wang, X. Wang, Y.Y. Hu, T. Feng, Y.L. Feng, and P.Y. Wu, Effect of laser energy density on the microstructure, mechanical properties, and deformation of Inconel 718 samples fabricated by selective laser melting, J. Alloys Compd. 786, 481–488 (2019),
https://doi.org/10.1016/j.jallcom.2019.01.377
[17] J.D. Madison and L.K. Aagesen, Quantitative characterization of porosity in laser welds of stainless steel, Scr. Mater. 67(9), 783–786 (2012),
https://doi.org/10.1016/j.scriptamat.2012.06.015
[18] M. Guo, D. Gu, L. Xi, L. Du, H. Zhang, and J. Zhang, Formation of scanning tracks during selective laser melting (SLM) of pure tungsten powder: Morphology, geometric features and forming mechanisms, Int. J. Refr. Met. Hard Mater. 79, 37–46 (2019),
https://doi.org/10.1016/j.ijrmhm.2018.11.003
[19] Y. Yang, C. Lu, L. Shen, Z. Zhao, S. Peng, and C. Shuai, In-situ deposition of apatite layer to protect Mg-based composite fabricated via laser additive manufacturing, J. Magn. Alloy. 11(2), 629–640 (2021),
https://doi.org/10.1016/j.jma.2021.04.009
[20] H. Gu, H. Gong, D. Pal, K. Rafi, T. Starr, and B. Stucker, Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel, in: Proceedings of the 24th Annual International Solid Freeform Fabrication Symposium (2013) pp. 474–489
[21] PowderRange 17-4PH Datasheet, Vol. 4548 (2000)
[22] G. Mordas, V. Jasulaitienė, A. Steponavičiūtė, M. Gaspariūnas, R. Petkevič, A. Selskienė, R. Juškėnas, D.F. Paul, J.E. Mann, V. Remeikis, and G. Račiukaitis, Characterisation of CoCrMo powder for additive manufacturing, Int. J. Adv. Manuf. Technol. 111(11–12), 3083–3093 (2020),
https://doi.org/10.1007/s00170-020-06236-3
[23] C. Sanz and V. García Navas, Structural integrity of direct metal laser sintered parts subjected to thermal and finishing treatments, J. Mater. Process. Technol. 213(12), 2126–2136 (2013),
https://doi.org/10.1016/j.jmatprotec.2013.06.013
[24] N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N.M. Everitt, Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality, Mater. Des. 104, 174–182 (2016),
https://doi.org/10.1016/j.matdes.2016.05.041
[25] J.J. Dunkley, ASM Handbook: Powder Metallurgy, Vol. 7, eds. P. Samal and J. Newkirk (ASM International, 2015)
[26] 17-4PH, 1.4542, X5CRNICUNB16-4 - Stainless steel (2021),
https://virgamet.com/17-4ph-x5crnicunb164-aisi-630-uns-s17400-1-4542-stainless-steel
[27] S. Sabooni, A. Chabok, S.C. Feng, H. Blaauw, T.C. Pijper, H.J. Yang, and Y.T. Pei, Laser powder bed fusion of 17–4 PH stainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties, Addit. Manuf. 46, 102176 (2021),
https://doi.org/10.1016/j.addma.2021.102176
[28] Y. Shang, Y. Yuan, Y. Zhang, D. Li, and Y. Li, Investigation into effects of scanning speed on in vitro biocompatibility of selective laser melted 316L stainless steel parts, MATEC Web Conf. 95, 0–3 (2017),
https://doi.org/10.1051/matecconf/20179501009
[29] C. Tan, K. Zhou, W. Ma, P. Zhang, M. Liu, and T. Kuang, Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel, Mater. Des. 134, 23–34 (2017),
https://doi.org/10.1016/j.matdes.2017.08.026
[30] D. Gu and Y. Shen, Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods, Mater. Design 30(8), 2903–2910 (2009),
https://doi.org/10.1016/j.matdes.2009.01.013
[31] H. Irrinki, J.S.D. Jangam, S. Pasebani, S. Badwe, J. Stitzel, K. Kate, O. Gulsoy, and S.V. Atre, Effects of particle characteristics on the microstructure and mechanical properties of 17-4 PH stainless steel fabricated by laser-powder bed fusion, Powder Technol. 331, 192–203 (2018),
https://doi.org/10.1016/j.powtec.2018.03.025
[32] M. Mahmoudy, A. Elwany, A. Yadollahi, S.M. Thompson, L. Bian, and N. Shamsaei, Mechanical properties and microstructural characterization of selective laser melted 17-4 PH stainless steel, Rapid Prototyp. J. 23(2), 280–294 (2017),
https://doi.org/10.1108/RPJ-12-2015-0192
[33] K.T. Yang, M.K. Kim, D. Kim, and J. Suhr, Investigation of laser powder bed fusion manufacturing and post-processing for surface quality of as-built 17-4PH stainless steel, Surf. Coatings Technol. 422, 127492 (2021),
https://doi.org/10.1016/j.surfcoat.2021.127492