Received 11 January 2024; revised 15 February 2024; accepted 22
February 2024
References /
Nuorodos
[1] E. Chlebus, B. Kuźnicka, T. Kurzynowski, and B. Dybała,
Microstructure and mechanical behaviour of Ti–6Al–7Nb alloy
produced by selective laser melting, Mater. Charact.
62(5),
488–495 (2011),
https://doi.org/10.1016/J.MATCHAR.2011.03.006
[2] I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov,
Single track formation in selective laser melting of metal
powders, J. Mater. Process. Technol.
210(12), 1624–1631
(2010),
https://doi.org/10.1016/J.JMATPROTEC.2010.05.010
[3] J.P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, and
M. Rombouts, Binding mechanisms in selective laser sintering and
selective laser melting, Rapid Prototyp. J.
11(1), 26–36
(2005),
https://doi.org/10.1108/13552540510573365
[4] D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser
additive manufacturing of metallic components: Materials,
processes and mechanisms, Int. Mater. Rev.
57(3),
133–164 (2012),
https://doi.org/10.1179/1743280411Y.0000000014
[5]
Springer Handbook of Mechanical Engineering, eds.
K.-H. Grote and E.K. Antonsson (Springer, 2009),
https://doi.org/10.1007/978-3-540-30738-9
[6] L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J.
Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, and R.B.
Wicker, Metal fabrication by additive manufacturing using laser
and electron beam melting technologies, J. Mater. Sci. Technol.
28(1), 1–14 (2012),
https://doi.org/10.1016/S1005-0302(12)60016-4
[7] Y. Tang, H.T. Loh, Y.S. Wong, J.Y.H. Fuh, L. Lu, and X.
Wang, Direct laser sintering of a copperbased alloy for creating
three-dimensional metal parts, J. Mater. Process. Technol.
140(1–3),
368–372 (2003),
https://doi.org/10.1016/S0924-0136(03)00766-0
[8] G.A. Ravi, X.J. Hao, N. Wain, X. Wu, and M.M. Attallah,
Direct laser fabrication of three dimensional components using
SC420 stainless steel, Mater. Des.
47, 731–736 (2013),
https://doi.org/10.1016/j.matdes.2012.12.062
[9] C. Yan, L. Hao, A. Hussein, P. Young, J. Huang, and W. Zhu,
Microstructure and mechanical properties of aluminium alloy
cellular lattice structures manufactured by direct metal laser
sintering, Mater. Sci. Eng. A
628, 238–246 (2015),
https://doi.org/10.1016/j.msea.2015.01.063
[10] H.H. Alsalla, C. Smith, and L. Hao, The effect of different
build orientations on the consolidation, tensile and fracture
toughness properties of direct metal laser sintering Ti-6Al-4V,
Rapid Prototyp. J.
24(2), 276–284 (2018),
https://doi.org/10.1108/RPJ-04-2016-0067
[11] A. Barazanchi, K. Li, B. Al-Amleh, K. Lyons, and J.
Waddell, Mechanical properties of laser-sintered 3D-printed
cobalt chromium and soft-milled cobalt chromium, Prosthesis
2(4),
313–320 (2020),
https://doi.org/10.3390/prosthesis2040028
[12] A. Yadollahi, N. Shamsaei, S.M. Thompson, and D.W. Seely,
Effects of process time interval and heat treatment on the
mechanical and microstructural properties of direct laser
deposited 316L stainless steel, Mater. Sci. Eng. A
644,
171–183 (2015),
https://doi.org/10.1016/j.msea.2015.07.056
[13] J. Delgado, J. Ciurana, and C.A. Rodríguez, Influence of
process parameters on part quality and mechanical properties for
DMLS and SLM with iron-based materials, Int. J. Adv. Manuf.
Technol.
60(5–8), 601–610 (2012),
https://doi.org/10.1007/s00170-011-3643-5
[14] E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato,
Effect of selective laser melting (SLM) process parameters on
microstructure and mechanical properties of 316L austenitic
stainless steel, J. Mater. Process. Technol.
249,
255–263 (2017),
https://doi.org/10.1016/j.jmatprotec.2017.05.042
[15] L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and
J.P. Kruth, A study of the microstructural evolution during
selective laser melting of Ti-6Al-4V, Acta Mater.
58(9),
3303–3312 (2010),
https://doi.org/10.1016/j.actamat.2010.02.004
[16] J.H. Yi, J.W. Kang, T.J. Wang, X. Wang, Y.Y. Hu, T. Feng,
Y.L. Feng, and P.Y. Wu, Effect of laser energy density on the
microstructure, mechanical properties, and deformation of
Inconel 718 samples fabricated by selective laser melting, J.
Alloys Compd.
786, 481–488 (2019),
https://doi.org/10.1016/j.jallcom.2019.01.377
[17] J.D. Madison and L.K. Aagesen, Quantitative
characterization of porosity in laser welds of stainless steel,
Scr. Mater.
67(9), 783–786 (2012),
https://doi.org/10.1016/j.scriptamat.2012.06.015
[18] M. Guo, D. Gu, L. Xi, L. Du, H. Zhang, and J. Zhang,
Formation of scanning tracks during selective laser melting
(SLM) of pure tungsten powder: Morphology, geometric features
and forming mechanisms, Int. J. Refr. Met. Hard Mater.
79,
37–46 (2019),
https://doi.org/10.1016/j.ijrmhm.2018.11.003
[19] Y. Yang, C. Lu, L. Shen, Z. Zhao, S. Peng, and C. Shuai,
In-situ deposition of apatite layer to protect Mg-based
composite fabricated via laser additive manufacturing, J. Magn.
Alloy.
11(2), 629–640 (2021),
https://doi.org/10.1016/j.jma.2021.04.009
[20] H. Gu, H. Gong, D. Pal, K. Rafi, T. Starr, and B. Stucker,
Influences of energy density on porosity and microstructure of
selective laser melted 17-4PH stainless steel, in:
Proceedings
of the 24th Annual International Solid Freeform Fabrication
Symposium (2013) pp. 474–489
[21]
PowderRange 17-4PH Datasheet, Vol. 4548 (2000)
[22] G. Mordas, V. Jasulaitienė, A. Steponavičiūtė, M.
Gaspariūnas, R. Petkevič, A. Selskienė, R. Juškėnas, D.F. Paul,
J.E. Mann, V. Remeikis, and G. Račiukaitis, Characterisation of
CoCrMo powder for additive manufacturing, Int. J. Adv. Manuf.
Technol.
111(11–12), 3083–3093 (2020),
https://doi.org/10.1007/s00170-020-06236-3
[23] C. Sanz and V. García Navas, Structural integrity of direct
metal laser sintered parts subjected to thermal and finishing
treatments, J. Mater. Process. Technol.
213(12),
2126–2136 (2013),
https://doi.org/10.1016/j.jmatprotec.2013.06.013
[24] N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N.M.
Everitt, Improving the fatigue behaviour of a selectively laser
melted aluminium alloy: Influence of heat treatment and surface
quality, Mater. Des.
104, 174–182 (2016),
https://doi.org/10.1016/j.matdes.2016.05.041
[25] J.J. Dunkley,
ASM Handbook: Powder Metallurgy, Vol.
7, eds. P. Samal and J. Newkirk (ASM International, 2015)
[26]
17-4PH, 1.4542, X5CRNICUNB16-4 - Stainless steel
(2021),
https://virgamet.com/17-4ph-x5crnicunb164-aisi-630-uns-s17400-1-4542-stainless-steel
[27] S. Sabooni, A. Chabok, S.C. Feng, H. Blaauw, T.C. Pijper,
H.J. Yang, and Y.T. Pei, Laser powder bed fusion of 17–4 PH
stainless steel: A comparative study on the effect of heat
treatment on the microstructure evolution and mechanical
properties, Addit. Manuf.
46, 102176 (2021),
https://doi.org/10.1016/j.addma.2021.102176
[28] Y. Shang, Y. Yuan, Y. Zhang, D. Li, and Y. Li,
Investigation into effects of scanning speed on
in vitro
biocompatibility of selective laser melted 316L stainless steel
parts, MATEC Web Conf.
95, 0–3 (2017),
https://doi.org/10.1051/matecconf/20179501009
[29] C. Tan, K. Zhou, W. Ma, P. Zhang, M. Liu, and T. Kuang,
Microstructural evolution, nanoprecipitation behavior and
mechanical properties of selective laser melted high-performance
grade 300 maraging steel, Mater. Des.
134, 23–34 (2017),
https://doi.org/10.1016/j.matdes.2017.08.026
[30] D. Gu and Y. Shen, Balling phenomena in direct laser
sintering of stainless steel powder: metallurgical mechanisms
and control methods, Mater. Design
30(8), 2903–2910
(2009),
https://doi.org/10.1016/j.matdes.2009.01.013
[31] H. Irrinki, J.S.D. Jangam, S. Pasebani, S. Badwe, J.
Stitzel, K. Kate, O. Gulsoy, and S.V. Atre, Effects of particle
characteristics on the microstructure and mechanical properties
of 17-4 PH stainless steel fabricated by laser-powder bed
fusion, Powder Technol.
331, 192–203 (2018),
https://doi.org/10.1016/j.powtec.2018.03.025
[32] M. Mahmoudy, A. Elwany, A. Yadollahi, S.M. Thompson, L.
Bian, and N. Shamsaei, Mechanical properties and microstructural
characterization of selective laser melted 17-4 PH stainless
steel, Rapid Prototyp. J.
23(2), 280–294 (2017),
https://doi.org/10.1108/RPJ-12-2015-0192
[33] K.T. Yang, M.K. Kim, D. Kim, and J. Suhr, Investigation of
laser powder bed fusion manufacturing and post-processing for
surface quality of as-built 17-4PH stainless steel, Surf.
Coatings Technol.
422, 127492 (2021),
https://doi.org/10.1016/j.surfcoat.2021.127492