[PDF]    https://doi.org/10.3952/physics.2024.64.2.5

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 122–138 (2024)

RECENT EVOLUTION OF THE STAR CLUSTER POPULATION IN THE ANDROMEDA’S DISK
Marius Čeponisa, Rima Stonkutėa,b, and Vladas Vansevičiusa
aCenter for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
bAstronomical Observatory of Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: vladas.vansevicius@ftmc.lt

Received 8 March 2024; revised 25 April 2024; accepted 26 April 2024

The most accurate parameters of star clusters are determined by analyzing colour-magnitude diagrams (CMDs) constructed from their member stars. The recent study applying this method to the analysis of the Panchromatic Hubble Andromeda Treasury (PHAT) survey star clusters includes objects up to ages of 300 Myr. In this study, we aim to extend a sample of star clusters with parameters determined based on CMDs of individual stars to older ages, up to ~700 Myr. We have developed an isochrone fitting procedure for CMDs of resolved and semi-resolved clusters to determine their parameters. The Bayesian approach is employed in determining star cluster ages and interstellar extinctions. We determined ages and extinctions for a sample of 854 star clusters from the M31 PHAT survey. We found that the star formation rate in the M31 galaxy was rather constant during the last ~130 Myr; however, a strong cluster formation episode occurred ~220 Myr ago, and can be attributed to the predicted passage of the M32 galaxy through the Andromeda’s disk.
Keywords: galaxies, Andromeda, M31, star clusters

ANDROMEDOS GALAKTIKOS DISKO ŽVAIGŽDŽIŲ SPIEČIŲ POPULIACIJOS EVOLIUCIJA
Marius Čeponisa, Rima Stonkutėa,b, Vladas Vansevičiusa

aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bVilniaus universiteto astronomijos observatorija, Vilnius, Lietuva

Tiksliausiai žvaigždžių spiečių parametrai nustatomi analizuojant jų žvaigždžių spalvos ir ryškio diagramas (angl. colour-magnitude diagrams, CMD). Neseniai šis būdas buvo panaudotas „Panchromatic Hubble Andromeda Treasury“ (PHAT) apžvalgos žvaigždžių spiečių iki 300 mln. m. amžiaus tyrimui. Šiame darbe, naudodami savo sukurtą žvaigždžių spiečių amžiaus ir tarpžvaigždinės ekstinkcijos nustatymo metodą, išplėtėme tiriamų žvaigždžių spiečių amžiaus ribą iki 700 mln. m. Atlikome 854 žvaigždžių spiečių imties iš PHAT apžvalgos analizę. Parodėme, kad žvaigždžių spiečių formavimosi greitis Andromedos galaktikoje (M31) buvo pastovus pastaruosius 130 mln. m. Tačiau nustatėme reikšmingą žvaigždėdaros suaktyvėjimą, įvykusį prieš ~220 mln. m., kuris gali būti siejamas su M32 galaktikos perėjimu per M31 diską.


References / Nuorodos

[1] C.J. Lada and E.A. Lada, Embedded clusters in molecular clouds, Annu. Rev. Astron. Astrophys. 41, 57 (2003),
https://doi.org/10.1146/annurev.astro.41.011802.094844
[2] L.C. Johnson, A.C. Seth, J.J. Dalcanton, L.C. Beerman, M. Fouesneau, A.R. Lewis, D.R. Weisz, B.F. Williams, E.F. Bell, A.E. Dolphin, et al., Panchromatic Hubble Andromeda Treasury. XVI. Star cluster formation efficiency and the clustered fraction of young stars, Astrophys. J. 827, 33 (2016),
https://doi.org/10.3847/0004-637X/827/1/33
[3] T.M. Wainer, L.C. Johnson, A.C. Seth, E.E. Torresvillanueva, J.J. Dalcanton, M.J. Durbin, A. Dolphin, D.R. Weisz, B.F. Williams, and Phatter Collaboration, The Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region (PHATTER). III. The mass function of young stellar clusters in M33, Astrophys. J. 928, 15 (2022),
https://doi.org/10.3847/1538-4357/ac51cf
[4] A.R. Lewis, A.E. Dolphin, J.J. Dalcanton, D.R. Weisz, B.F. Williams, E.F. Bell, A.C. Seth, J.E. Simones, E.D. Skillman, Y. Choi, et al., The Panchromatic Hubble Andromeda Treasury. XI. The spatially resolved recent star formation history of M31, Astrophys. J. 805, 183 (2015),
https://doi.org/10.1088/0004-637X/805/2/183
[5] E.J. Bernard, A.M.N. Ferguson, J.C. Richardson, M.J. Irwin, M.K. Barker, S.L. Hidalgo, A. Aparicio, S.C. Chapman, R.A. Ibata, G.F. Lewis, A.W. Mc-Connachie, and N.R. Tanvir, The nature and origin of substructure in the outskirts of M31 – II. Detailed star formation histories, MNRAS 446, 2789 (2015),
https://doi.org/10.1093/mnras/stu2309
[6] J.J. Dalcanton, B.F. Williams, D. Lang, T.R. Lauer, J.S. Kalirai, A.C. Seth, A. Dolphin, P. Rosenfield, D.R. Weisz, E.F. Bell, et al., The Panchromatic Hubble Andromeda Treasury, Astrophys. J. Suppl. 200, 18 (2012),
https://doi.org/10.1088/0067-0049/200/2/18
[7] L.C. Johnson, A.C. Seth, J.J. Dalcanton, M.L. Wallace, R.J. Simpson, C.J. Lintott, A. Kapadia, E.D. Skillman, N. Caldwell, M. Fouesneau, et al., PHAT Stellar Cluster Survey. II. Andromeda Project Cluster Catalog, Astrophys. J. 802, 127 (2015),
https://doi.org/10.1088/0004-637X/802/2/127
[8] P. de Meulenaer, D. Narbutis, T. Mineikis, and V. Vansevičius, Deriving physical parameters of unresolved star clusters. III. Application to M31 PHAT clusters, Astron. Astrophys. 574, A66 (2015),
https://doi.org/10.1051/0004-6361/201425121
[9] P. de Meulenaer, R. Stonkutė, and V. Vansevičius, Deriving physical parameters of unresolved star clusters. V. M31 PHAT star clusters, Astron. Astrophys. 602, A112 (2017),
https://doi.org/10.1051/0004-6361/201730751
[10] A. Bridžius, D. Narbutis, R. Stonkutė, V. Deveikis, and V. Vansevičius, Accuracy of star cluster parameters from integrated UBVRIJHK photometry, Balt. Astron. 17, 337 (2008),
https://doi.org/10.48550/arXiv.0902.3167
[11] B.F. Williams, M. Durbin, D. Lang, J.J. Dalcanton, A.E. Dolphin, A. Smercina, P. Yanchulova Merica-Jones, D.R. Weisz, E.F. Bell, K.M. Gilbert, et al., The Panchromatic Hubble Andromeda Treasury. XXI. The Legacy Resolved Stellar Photometry Catalog, Astrophys. J. Suppl. 268, 48 (2023),
https://doi.org/10.3847/1538-4365/acea61
[12] R. Naujalis, R. Stonkutė, and V. Vansevičius, Deriving physical parameters of unresolved star clusters. VI. Adaptive aperture photometry of the M31 PHAT star clusters, Astron. Astrophys. 654, A6 (2021),
https://doi.org/10.1051/0004-6361/202039306
[13] E. Kriščiūnas, K. Daugevičius, R. Stonkutė, and V. Vansevičius, Deriving physical parameters of unresolved star clusters. VII. Adaptive aperture photometry of the M31 PHAT star clusters, Astron. Astrophys. 677, A100 (2023),
https://doi.org/10.1051/0004-6361/202347140
[14] C. Bonatto and E. Bica, Investigating the age and structure of the infrared old open clusters LK1, LK10, FSR1521 and FSR1555, MNRAS 392, 483 (2009),
https://doi.org/10.1111/j.1365-2966.2008.14093.x
[15] E.R. Garro, D. Minniti, M. Gómez, J.G. Fernández-Trincado, J. Alonso-García, M. Hempel, and R. Zelada Bacigalupo, A new low-luminosity globular cluster discovered in the Milky Way with the VVVX survey, Astron. Astrophys. 662, A95 (2022),
https://doi.org/10.1051/0004-6361/202243342
[16] A.B. Pace, S.E. Koposov, M.G. Walker, N. Caldwell, M. Mateo, E.W. Olszewski, I.U. Roederer, J.I. Bailey, V. Belokurov, K. Kuehn, T.S. Li, and D.B. Zucker, The kinematics, metallicities, and orbits of six recently discovered Galactic star clusters with Magellan/M2FS spectroscopy, MNRAS 526, 1075 (2023),
https://doi.org/10.1093/mnras/stad2760
[17] S. Sandrelli, A. Bragaglia, M. Tosi, and G. Marconi, The intermediate age open cluster NGC 2660, MNRAS 309, 739 (1999),
https://doi.org/10.1046/j.1365-8711.1999.02906.x
[18] M. Cignoni, G. Beccari, A. Bragaglia, and M. Tosi, Three new bricks in the wall: Berkeley 23, Berkeley 31 and King 8, MNRAS 416, 1077 (2011),
https://doi.org/10.1111/j.1365-2966.2011.19104.x
[19] C. Bonatto, E. Bica, and E.F. Lima, Deriving reliable fundamental parameters of pre-main-sequence-rich star clusters affected by differential reddening, MNRAS 420, 352 (2012),
https://doi.org/10.1111/j.1365-2966.2011.20039.x
[20] W.L. Sanders, An improved method for computing membership probabilities in open clusters, Astron. Astrophys. 14, 226 (1971)
[21] L.M. Sarro, H. Bouy, A. Berihuete, E. Bertin, E. Moraux, J. Bouvier, J.C. Cuillandre, D. Barrado, and E. Solano, Cluster membership probabilities from proper motions and multi-wavelength photometric catalogues. I. Method and application to the Pleiades cluster, Astron. Astrophys. 563, A45 (2014),
https://doi.org/10.1051/0004-6361/201322413
[22] J.J. Claria and E. Lapasset, Fundamental parameters of the open cluster NGC 2567, Astron. J. 91, 326 (1986),
https://doi.org/10.1086/114013
[23] J. Roberts, C. Lewis, D.R. Gies, J.R. Parks, E.D. Grundstrom, M.V. McSwain, D.H. Berger, B.D. Mason, T.A. ten Brummelaar, and N.H. Turner, The membership and distance of the open Cluster Collinder 419, Astron. J. 140, 744 (2010),
https://doi.org/10.1088/0004-6256/140/3/744
[24] M. Mateo and P. Hodge, CCD photometry of Large Magellanic Cloud clusters. II. The Intermediate-Age Cluster H4, Astrophys. J. Suppl. 60, 893 (1986),
https://doi.org/10.1086/191104
[25] C. Bonatto and E. Bica, Open clusters in dense fields: the importance of field-star decontamination for NGC 5715, Lyngå 4, Lyngå 9, Trumpler 23, Trumpler 26 and Czernik 37, MNRAS 377, 1301 (2007),
https://doi.org/10.1111/j.1365-2966.2007.11691.x
[26] A.E. Piatti and E. Bica, Washington photometry of candidate star clusters in the Small Magellanic Cloud, MNRAS 425, 3085 (2012),
https://doi.org/10.1111/j.1365-2966.2012.21694.x
[27] A. Krone-Martins and A. Moitinho, UPMASK: unsupervised photometric membership assignment in stellar clusters, Astron. Astrophys. 561, A57 (2014),
https://doi.org/10.1051/0004-6361/201321143
[28] M.S. Pera, G.I. Perren, A. Moitinho, H.D. Navone, and R.A. Vazquez, pyUPMASK: an improved unsupervised clustering algorithm, Astron. Astrophys. 650, A109 (2021),
https://doi.org/10.1051/0004-6361/202040252
[29] H. Monteiro, W.S. Dias, and T.C. Caetano, Fitting isochrones to open cluster photometric data. A new global optimization tool, Astron. Astrophys. 516, A2 (2010),
https://doi.org/10.1051/0004-6361/200913677
[30] D.B. Pavani, L.O. Kerber, E. Bica, and W.J. Maciel, Diagnostic tool to analyse colour-magnitude diagrams of poorly populated stellar concentrations, MNRAS 412, 1611 (2011),
https://doi.org/10.1111/j.1365-2966.2010.17999.x
[31] T. Cantat-Gaudin, A. Vallenari, R. Sordo, F. Pensabene, A. Krone-Martins, A. Moitinho, C. Jordi, L. Casamiquela, L. Balaguer-Núnez, C. Soubiran, and N. Brouillet, Characterising open clusters in the solar neighbourhood with the Tycho-Gaia Astrometric Solution, Astron. Astrophys. 615, A49 (2018),
https://doi.org/10.1051/0004-6361/201731251
[32] L.O. Kerber, B.X. Santiago, R. Castro, and D. Valls-Gabaud, Analysis of colour-magnitude diagrams of rich LMC clusters: NGC 1831, Astron. Astrophys. 390, 121 (2002),
https://doi.org/10.1051/0004-6361:20020692
[33] G.I. Perren, R.A. Vázquez, and A.E. Piatti, ASteCA: Automated Stellar Cluster Analysis, Astron. Astrophys. 576, A6 (2015),
https://doi.org/10.1051/0004-6361/201424946
[34] J. Bialopetravičius, D. Narbutis, and V. Vansevičius, Deriving star cluster parameters with convolutional neural networks. I. Age, mass, and size, Astron. Astrophys. 621, A103 (2019),
https://doi.org/10.1051/0004-6361/201833833
[35] A.W. McConnachie, M.J. Irwin, A.M.N. Ferguson, R.A. Ibata, G.F. Lewis, and N. Tanvir, Distances and metallicities for 17 Local Group galaxies, MNRAS 356, 979 (2005),
https://doi.org/10.1111/j.1365-2966.2004.08514.x
[36] P. Kroupa, On the variation of the initial mass function, MNRAS 322, 231 (2001),
https://doi.org/10.1046/j.1365-8711.2001.04022.x
[37] A. Bressan, P. Marigo, L. Girardi, B. Salasnich, C. Dal Cero, S. Rubele, and A. Nanni, PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code, MNRAS 427, 127 (2012),
https://doi.org/10.1111/j.1365-2966.2012.21948.x
[38] P. Marigo, L. Girardi, A. Bressan, P. Rosenfield, B. Aringer, Y. Chen, M. Dussin, A. Nanni, G. Pastorelli, T.S. Rodrigues, et al., A new generation of PARSEC-COLIBRI stellar isochrones including the TP-AGB phase, Astrophys. J. 835, 77 (2017),
https://doi.org/10.3847/1538-4357/835/1/77
[39] N.E. Sanders, N. Caldwell, J. McDowell, and P. Harding, The metallicity profile of M31 from spectroscopy of hundreds of H II regions and PNe, Astrophys. J. 758, 133 (2012),
https://doi.org/10.1088/0004-637X/758/2/133
[40] A. Zurita and F. Bresolin, The chemical abundance in M31 from H II regions, MNRAS 427, 1463 (2012),
https://doi.org/10.1111/j.1365-2966.2012.22075.x
[41] E.F. Schlafly and D.P. Finkbeiner, Measuring reddening with sloan digital sky survey stellar spectra and recalibrating SFD, Astrophys. J. 737, 103 (2011),
https://doi.org/10.1088/0004-637X/737/2/103
[42] P.J. Brown and T. Walker, Galaxian contamination in galactic reddening maps, Astron. J. 163, 14 (2022),
https://doi.org/10.3847/1538-3881/ac32cb
[43] L.C. Johnson, T.M. Wainer, E.E. Torresvillanueva, A.C. Seth, B.F. Williams, M.J. Durbin, J.J. Dalcanton, D.R. Weisz, E.F. Bell, P. Guhathakurta, E. Skillman, A. Smercina, and Phatter Collaboration, The Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region (PHATTER). IV. Star Cluster Catalog, Astrophys. J. 938, 81 (2022),
https://doi.org/10.3847/1538-4357/ac8def
[44] V. Vansevičius, K. Kodaira, D. Narbutis, R. Stonkutė, A. Bridžius, V. Deveikis, and D. Semionov, Compact star clusters in the M31 Disk, Astrophys. J. 703, 1872 (2009),
https://doi.org/10.1088/0004-637X/703/2/1872
[45] P. de Meulenaer, D. Narbutis, T. Mineikis, and V. Vansevičius, Deriving physical parameters of unresolved star clusters. I. Age, mass, and extinction degeneracies, Astron. Astrophys. 550, A20 (2013),
https://doi.org/10.1051/0004-6361/201220674
[46] P. de Meulenaer, D. Narbutis, T. Mineikis, and V. Vansevičius, Deriving physical parameters of unresolved star clusters. II. The degeneracies of age, mass, extinction, and metallicity, Astron. Astrophys. 569, A4 (2014),
https://doi.org/10.1051/0004-6361/201423988
[47] S.G. Boutloukos and H.J.G.L.M. Lamers, Star cluster formation and disruption time-scales – I. An empirical determination of the disruption time of star clusters in four galaxies, MNRAS 338, 717 (2003),
https://doi.org/10.1046/j.1365-8711.2003.06083.x
[48] H.J.G.L.M. Lamers, M. Gieles, and S.F. Portegies Zwart, Disruption time scales of star clusters in different galaxies, Astron. Astrophys. 429, 173 (2005),
https://doi.org/10.1051/0004-6361:20041476
[49] K. Kodaira, V. Vansevičius, A. Bridžius, Y. Komiyama, S. Miyazaki, R. Stonkutė, I. Šablevičiūtė, and D. Narbutis, A survey of compact star clusters in the south-west field of the M31 disk, Publ. Astron. Soc. Jpn. 56, 1025 (2004),
https://doi.org/10.1093/pasj/56.6.1025
[50] D. Narbutis, V. Vansevičius, K. Kodaira, A. Bridžius, and R. Stonkutė, A survey of star clusters in the M31 southwest field: UBVRI photometry and multiband maps, Astrophys. J. Suppl. 177, 174 (2008),
https://doi.org/10.1086/586736
[51] D.L. Block, F. Bournaud, F. Combes, R. Groess, P. Barmby, M.L.N. Ashby, G.G.Fazio, M.A. Pahre, and S.P. Willner, An almost head-on collision as the origin of two off-centre rings in the Andromeda galaxy, Nature 443, 832 (2006),
https://doi.org/10.1038/nature05184
[52] S. Wang, J. Ma, Z. Fan, Z. Wu, T. Zhang, H. Zou, and X. Zhou, Age and mass studies for young star clusters in M31 from SEDS-FIT, Astron. J. 144, 191 (2012),
https://doi.org/10.1088/0004-6256/144/6/191
[53] M. Dierickx, L. Blecha, and A. Loeb, Signatures of the M31–M32 galactic collision, Astrophys. J. Lett. 788, L38 (2014),
https://doi.org/10.1088/2041-8205/788/2/L38
[54] L.C. Johnson, A.C. Seth, J.J. Dalcanton, L.C. Beerman, M. Fouesneau, D.R. Weisz, T.A. Bell, A.E. Dolphin, K. Sandstrom, and B.F. Williams, Panchromatic Hubble Andromeda Treasury. XVIII. The high-mass truncation of the star cluster mass function, Astrophys. J. 839, 78 (2017),
https://doi.org/10.3847/1538-4357/aa6a1f
[55] P.W. Hodge, The Andromeda Galaxy, Astrophysics and Space Science Library, Vol. 176 (Springer, Netherlands, 1992) p. viii,
https://doi.org/10.1007/978-94-015-8056-4