Received 8 March 2024; revised 25 April 2024; accepted 26 April
2024
References /
Nuorodos
[1] C.J. Lada and E.A. Lada, Embedded clusters in molecular
clouds, Annu. Rev. Astron. Astrophys.
41, 57 (2003),
https://doi.org/10.1146/annurev.astro.41.011802.094844
[2] L.C. Johnson, A.C. Seth, J.J. Dalcanton, L.C. Beerman, M.
Fouesneau, A.R. Lewis, D.R. Weisz, B.F. Williams, E.F. Bell,
A.E. Dolphin, et al., Panchromatic Hubble Andromeda Treasury.
XVI. Star cluster formation efficiency and the clustered
fraction of young stars, Astrophys. J.
827, 33 (2016),
https://doi.org/10.3847/0004-637X/827/1/33
[3] T.M. Wainer, L.C. Johnson, A.C. Seth, E.E. Torresvillanueva,
J.J. Dalcanton, M.J. Durbin, A. Dolphin, D.R. Weisz, B.F.
Williams, and Phatter Collaboration, The Panchromatic Hubble
Andromeda Treasury: Triangulum Extended Region (PHATTER). III.
The mass function of young stellar clusters in M33, Astrophys.
J.
928, 15 (2022),
https://doi.org/10.3847/1538-4357/ac51cf
[4] A.R. Lewis, A.E. Dolphin, J.J. Dalcanton, D.R. Weisz, B.F.
Williams, E.F. Bell, A.C. Seth, J.E. Simones, E.D. Skillman, Y.
Choi, et al., The Panchromatic Hubble Andromeda Treasury. XI.
The spatially resolved recent star formation history of M31,
Astrophys. J.
805, 183 (2015),
https://doi.org/10.1088/0004-637X/805/2/183
[5] E.J. Bernard, A.M.N. Ferguson, J.C. Richardson, M.J. Irwin,
M.K. Barker, S.L. Hidalgo, A. Aparicio, S.C. Chapman, R.A.
Ibata, G.F. Lewis, A.W. Mc-Connachie, and N.R. Tanvir, The
nature and origin of substructure in the outskirts of M31 – II.
Detailed star formation histories, MNRAS
446, 2789
(2015),
https://doi.org/10.1093/mnras/stu2309
[6] J.J. Dalcanton, B.F. Williams, D. Lang, T.R. Lauer, J.S.
Kalirai, A.C. Seth, A. Dolphin, P. Rosenfield, D.R. Weisz, E.F.
Bell, et al., The Panchromatic Hubble Andromeda Treasury,
Astrophys. J. Suppl.
200, 18 (2012),
https://doi.org/10.1088/0067-0049/200/2/18
[7] L.C. Johnson, A.C. Seth, J.J. Dalcanton, M.L. Wallace, R.J.
Simpson, C.J. Lintott, A. Kapadia, E.D. Skillman, N. Caldwell,
M. Fouesneau, et al., PHAT Stellar Cluster Survey. II. Andromeda
Project Cluster Catalog, Astrophys. J.
802, 127 (2015),
https://doi.org/10.1088/0004-637X/802/2/127
[8] P. de Meulenaer, D. Narbutis, T. Mineikis, and V.
Vansevičius, Deriving physical parameters of unresolved star
clusters. III. Application to M31 PHAT clusters, Astron.
Astrophys.
574, A66 (2015),
https://doi.org/10.1051/0004-6361/201425121
[9] P. de Meulenaer, R. Stonkutė, and V. Vansevičius, Deriving
physical parameters of unresolved star clusters. V. M31 PHAT
star clusters, Astron. Astrophys.
602, A112 (2017),
https://doi.org/10.1051/0004-6361/201730751
[10] A. Bridžius, D. Narbutis, R. Stonkutė, V. Deveikis, and V.
Vansevičius, Accuracy of star cluster parameters from integrated
UBVRIJHK photometry, Balt. Astron.
17, 337 (2008),
https://doi.org/10.48550/arXiv.0902.3167
[11] B.F. Williams, M. Durbin, D. Lang, J.J. Dalcanton, A.E.
Dolphin, A. Smercina, P. Yanchulova Merica-Jones, D.R. Weisz,
E.F. Bell, K.M. Gilbert, et al., The Panchromatic Hubble
Andromeda Treasury. XXI. The Legacy Resolved Stellar Photometry
Catalog, Astrophys. J. Suppl.
268, 48 (2023),
https://doi.org/10.3847/1538-4365/acea61
[12] R. Naujalis, R. Stonkutė, and V. Vansevičius, Deriving
physical parameters of unresolved star clusters. VI. Adaptive
aperture photometry of the M31 PHAT star clusters, Astron.
Astrophys.
654, A6 (2021),
https://doi.org/10.1051/0004-6361/202039306
[13] E. Kriščiūnas, K. Daugevičius, R. Stonkutė, and V.
Vansevičius, Deriving physical parameters of unresolved star
clusters. VII. Adaptive aperture photometry of the M31 PHAT star
clusters, Astron. Astrophys.
677, A100 (2023),
https://doi.org/10.1051/0004-6361/202347140
[14] C. Bonatto and E. Bica, Investigating the age and structure
of the infrared old open clusters LK1, LK10, FSR1521 and
FSR1555, MNRAS
392, 483 (2009),
https://doi.org/10.1111/j.1365-2966.2008.14093.x
[15] E.R. Garro, D. Minniti, M. Gómez, J.G. Fernández-Trincado,
J. Alonso-García, M. Hempel, and R. Zelada Bacigalupo, A new
low-luminosity globular cluster discovered in the Milky Way with
the VVVX survey, Astron. Astrophys.
662, A95
(2022),
https://doi.org/10.1051/0004-6361/202243342
[16] A.B. Pace, S.E. Koposov, M.G. Walker, N. Caldwell, M.
Mateo, E.W. Olszewski, I.U. Roederer, J.I. Bailey, V. Belokurov,
K. Kuehn, T.S. Li, and D.B. Zucker, The kinematics,
metallicities, and orbits of six recently discovered Galactic
star clusters with Magellan/M2FS spectroscopy, MNRAS
526,
1075 (2023),
https://doi.org/10.1093/mnras/stad2760
[17] S. Sandrelli, A. Bragaglia, M. Tosi, and G. Marconi, The
intermediate age open cluster NGC 2660, MNRAS
309, 739
(1999),
https://doi.org/10.1046/j.1365-8711.1999.02906.x
[18] M. Cignoni, G. Beccari, A. Bragaglia, and M. Tosi, Three
new bricks in the wall: Berkeley 23, Berkeley 31 and King 8,
MNRAS
416, 1077 (2011),
https://doi.org/10.1111/j.1365-2966.2011.19104.x
[19] C. Bonatto, E. Bica, and E.F. Lima, Deriving reliable
fundamental parameters of pre-main-sequence-rich star clusters
affected by differential reddening, MNRAS
420, 352
(2012),
https://doi.org/10.1111/j.1365-2966.2011.20039.x
[20] W.L. Sanders, An improved method for computing membership
probabilities in open clusters, Astron. Astrophys.
14,
226 (1971)
[21] L.M. Sarro, H. Bouy, A. Berihuete, E. Bertin, E. Moraux, J.
Bouvier, J.C. Cuillandre, D. Barrado, and E. Solano, Cluster
membership probabilities from proper motions and
multi-wavelength photometric catalogues. I. Method and
application to the Pleiades cluster, Astron. Astrophys.
563,
A45 (2014),
https://doi.org/10.1051/0004-6361/201322413
[22] J.J. Claria and E. Lapasset, Fundamental parameters of the
open cluster NGC 2567, Astron. J.
91, 326 (1986),
https://doi.org/10.1086/114013
[23] J. Roberts, C. Lewis, D.R. Gies, J.R. Parks, E.D.
Grundstrom, M.V. McSwain, D.H. Berger, B.D. Mason, T.A. ten
Brummelaar, and N.H. Turner, The membership and distance of the
open Cluster Collinder 419, Astron. J.
140, 744 (2010),
https://doi.org/10.1088/0004-6256/140/3/744
[24] M. Mateo and P. Hodge, CCD photometry of Large Magellanic
Cloud clusters. II. The Intermediate-Age Cluster H4, Astrophys.
J. Suppl.
60, 893 (1986),
https://doi.org/10.1086/191104
[25] C. Bonatto and E. Bica, Open clusters in dense fields: the
importance of field-star decontamination for NGC 5715, Lyngå 4,
Lyngå 9, Trumpler 23, Trumpler 26 and Czernik 37, MNRAS
377,
1301 (2007),
https://doi.org/10.1111/j.1365-2966.2007.11691.x
[26] A.E. Piatti and E. Bica, Washington photometry of candidate
star clusters in the Small Magellanic Cloud, MNRAS
425,
3085 (2012),
https://doi.org/10.1111/j.1365-2966.2012.21694.x
[27] A. Krone-Martins and A. Moitinho, UPMASK: unsupervised
photometric membership assignment in stellar clusters, Astron.
Astrophys.
561, A57 (2014),
https://doi.org/10.1051/0004-6361/201321143
[28] M.S. Pera, G.I. Perren, A. Moitinho, H.D. Navone, and R.A.
Vazquez, pyUPMASK: an improved unsupervised clustering
algorithm, Astron. Astrophys.
650, A109 (2021),
https://doi.org/10.1051/0004-6361/202040252
[29] H. Monteiro, W.S. Dias, and T.C. Caetano, Fitting
isochrones to open cluster photometric data. A new global
optimization tool, Astron. Astrophys.
516, A2 (2010),
https://doi.org/10.1051/0004-6361/200913677
[30] D.B. Pavani, L.O. Kerber, E. Bica, and W.J. Maciel,
Diagnostic tool to analyse colour-magnitude diagrams of poorly
populated stellar concentrations, MNRAS
412, 1611
(2011),
https://doi.org/10.1111/j.1365-2966.2010.17999.x
[31] T. Cantat-Gaudin, A. Vallenari, R. Sordo, F. Pensabene, A.
Krone-Martins, A. Moitinho, C. Jordi, L. Casamiquela, L.
Balaguer-Núnez, C. Soubiran, and N. Brouillet, Characterising
open clusters in the solar neighbourhood with the Tycho-Gaia
Astrometric Solution, Astron. Astrophys.
615, A49
(2018),
https://doi.org/10.1051/0004-6361/201731251
[32] L.O. Kerber, B.X. Santiago, R. Castro, and D. Valls-Gabaud,
Analysis of colour-magnitude diagrams of rich LMC clusters: NGC
1831, Astron. Astrophys.
390, 121 (2002),
https://doi.org/10.1051/0004-6361:20020692
[33] G.I. Perren, R.A. Vázquez, and A.E. Piatti, ASteCA:
Automated Stellar Cluster Analysis, Astron. Astrophys.
576,
A6 (2015),
https://doi.org/10.1051/0004-6361/201424946
[34] J. Bialopetravičius, D. Narbutis, and V. Vansevičius,
Deriving star cluster parameters with convolutional neural
networks. I. Age, mass, and size, Astron. Astrophys.
621,
A103 (2019),
https://doi.org/10.1051/0004-6361/201833833
[35] A.W. McConnachie, M.J. Irwin, A.M.N. Ferguson, R.A. Ibata,
G.F. Lewis, and N. Tanvir, Distances and metallicities for 17
Local Group galaxies, MNRAS
356, 979 (2005),
https://doi.org/10.1111/j.1365-2966.2004.08514.x
[36] P. Kroupa, On the variation of the initial mass function,
MNRAS
322, 231 (2001),
https://doi.org/10.1046/j.1365-8711.2001.04022.x
[37] A. Bressan, P. Marigo, L. Girardi, B. Salasnich, C. Dal
Cero, S. Rubele, and A. Nanni, PARSEC: stellar tracks and
isochrones with the PAdova and TRieste Stellar Evolution Code,
MNRAS
427, 127 (2012),
https://doi.org/10.1111/j.1365-2966.2012.21948.x
[38] P. Marigo, L. Girardi, A. Bressan, P. Rosenfield, B.
Aringer, Y. Chen, M. Dussin, A. Nanni, G. Pastorelli, T.S.
Rodrigues, et al., A new generation of PARSEC-COLIBRI stellar
isochrones including the TP-AGB phase, Astrophys. J.
835,
77 (2017),
https://doi.org/10.3847/1538-4357/835/1/77
[39] N.E. Sanders, N. Caldwell, J. McDowell, and P. Harding, The
metallicity profile of M31 from spectroscopy of hundreds of H II
regions and PNe, Astrophys. J.
758, 133 (2012),
https://doi.org/10.1088/0004-637X/758/2/133
[40] A. Zurita and F. Bresolin, The chemical abundance in M31
from H II regions, MNRAS
427, 1463 (2012),
https://doi.org/10.1111/j.1365-2966.2012.22075.x
[41] E.F. Schlafly and D.P. Finkbeiner, Measuring reddening with
sloan digital sky survey stellar spectra and recalibrating SFD,
Astrophys. J.
737, 103 (2011),
https://doi.org/10.1088/0004-637X/737/2/103
[42] P.J. Brown and T. Walker, Galaxian contamination in
galactic reddening maps, Astron. J.
163, 14 (2022),
https://doi.org/10.3847/1538-3881/ac32cb
[43] L.C. Johnson, T.M. Wainer, E.E. Torresvillanueva, A.C.
Seth, B.F. Williams, M.J. Durbin, J.J. Dalcanton, D.R. Weisz,
E.F. Bell, P. Guhathakurta, E. Skillman, A. Smercina, and
Phatter Collaboration, The Panchromatic Hubble Andromeda
Treasury: Triangulum Extended Region (PHATTER). IV. Star Cluster
Catalog, Astrophys. J.
938, 81 (2022),
https://doi.org/10.3847/1538-4357/ac8def
[44] V. Vansevičius, K. Kodaira, D. Narbutis, R. Stonkutė, A.
Bridžius, V. Deveikis, and D. Semionov, Compact star clusters in
the M31 Disk, Astrophys. J.
703, 1872 (2009),
https://doi.org/10.1088/0004-637X/703/2/1872
[45] P. de Meulenaer, D. Narbutis, T. Mineikis, and V.
Vansevičius, Deriving physical parameters of unresolved star
clusters. I. Age, mass, and extinction degeneracies, Astron.
Astrophys.
550, A20 (2013),
https://doi.org/10.1051/0004-6361/201220674
[46] P. de Meulenaer, D. Narbutis, T. Mineikis, and V.
Vansevičius, Deriving physical parameters of unresolved star
clusters. II. The degeneracies of age, mass, extinction, and
metallicity, Astron. Astrophys.
569, A4 (2014),
https://doi.org/10.1051/0004-6361/201423988
[47] S.G. Boutloukos and H.J.G.L.M. Lamers, Star cluster
formation and disruption time-scales – I. An empirical
determination of the disruption time of star clusters in four
galaxies, MNRAS
338, 717 (2003),
https://doi.org/10.1046/j.1365-8711.2003.06083.x
[48] H.J.G.L.M. Lamers, M. Gieles, and S.F. Portegies Zwart,
Disruption time scales of star clusters in different galaxies,
Astron. Astrophys.
429, 173 (2005),
https://doi.org/10.1051/0004-6361:20041476
[49] K. Kodaira, V. Vansevičius, A. Bridžius, Y. Komiyama, S.
Miyazaki, R. Stonkutė, I. Šablevičiūtė, and D. Narbutis, A
survey of compact star clusters in the south-west field of the
M31 disk, Publ. Astron. Soc. Jpn.
56, 1025 (2004),
https://doi.org/10.1093/pasj/56.6.1025
[50] D. Narbutis, V. Vansevičius, K. Kodaira, A. Bridžius, and
R. Stonkutė, A survey of star clusters in the M31 southwest
field: UBVRI photometry and multiband maps, Astrophys. J. Suppl.
177, 174 (2008),
https://doi.org/10.1086/586736
[51] D.L. Block, F. Bournaud, F. Combes, R. Groess, P. Barmby,
M.L.N. Ashby, G.G.Fazio, M.A. Pahre, and S.P. Willner, An almost
head-on collision as the origin of two off-centre rings in the
Andromeda galaxy, Nature
443, 832 (2006),
https://doi.org/10.1038/nature05184
[52] S. Wang, J. Ma, Z. Fan, Z. Wu, T. Zhang, H. Zou, and X.
Zhou, Age and mass studies for young star clusters in M31 from
SEDS-FIT, Astron. J.
144, 191 (2012),
https://doi.org/10.1088/0004-6256/144/6/191
[53] M. Dierickx, L. Blecha, and A. Loeb, Signatures of the
M31–M32 galactic collision, Astrophys. J. Lett.
788, L38
(2014),
https://doi.org/10.1088/2041-8205/788/2/L38
[54] L.C. Johnson, A.C. Seth, J.J. Dalcanton, L.C. Beerman, M.
Fouesneau, D.R. Weisz, T.A. Bell, A.E. Dolphin, K. Sandstrom,
and B.F. Williams, Panchromatic Hubble Andromeda Treasury.
XVIII. The high-mass truncation of the star cluster mass
function, Astrophys. J.
839, 78 (2017),
https://doi.org/10.3847/1538-4357/aa6a1f
[55] P.W. Hodge,
The Andromeda Galaxy, Astrophysics and
Space Science Library, Vol. 176 (Springer, Netherlands, 1992) p.
viii,
https://doi.org/10.1007/978-94-015-8056-4