[PDF]    https://doi.org/10.3952/physics.2024.64.3.1

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 139–161 (2024)

SECOND-ORDER RAYLEIGH–SCHRÖDINGER PERTURBATION THEORY FOR THE GRASP2018 PACKAGE: CORE–CORE CORRELATIONS*
Gediminas Gaigalas, Pavel Rynkun, and Laima Kitovienė
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: gediminas.gaigalas@tfai.vu.lt; pavel.rynkun@tfai.vu.lt; laima.radziute@tfai.vu.lt

Received 28 May 2024; accepted 15 July 2024

GRASP package is based on the relativistic configuration interaction in which accurate calculations, accounting for valence, valence–valence, core–valence, core and core–core electron correlations, often rely on massive CSF expansions. This paper presents a further development of the method based on the second-order perturbation theory for finding the most important CSFs that have the greatest influence on the core–valence, core and core–core correlations. This method is based on a combination of the relativistic configuration interaction method and the stationary second-order Rayleigh–Schrödinger many-body perturbation theory in an irreducible tensorial form [G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core–valence correlations, Lith. J. Phys. 64(1), 20–39 (2024), https://doi.org/10.3952/physics.2024.64.1.3, and G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core correlations, Lith. J. Phys. 64(2), 73–81 (2024), https://doi.org/10.3952/physics.2024.64.2.1]. In this extension, the perturbation theory takes into account electron core–valence, core and core–core correlations, where an atom or ion has any number of valence electrons, for calculation of energy spectra and other properties. Meanwhile, the rest of the correlations are taken into account in a traditional way. This allows a significant reduction of the space of the configuration state function for complex atoms and ions. We also demonstrate how this method works for calculations of the energy structure and E1 transition properties of Fe XV ion.
Keywords: configuration interaction, spin-angular integration, perturbation theory, tensorial algebra, core–core correlations, core–valence correlations, core correlations

* Dedicated to the memory of professor Adolfas Jucys (1904–1974), pioneer of contemporary theoretical physics in Lithuania, initiator of the ‘Lithuanian Physics Collection’, on the occasion of his birth and death anniversaries.

ANTROSIOS EILĖS RELĖJAUS IR ŠRĖDINGERIO TRIKDYMŲ TEORIJA GRASP2018 PROGRAMINIAM PAKETUI: KAMIENO–KAMIENO KORELIACIJOS*
Gediminas Gaigalas, Pavel Rynkun, Laima Kitovienė

Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

GRASP programinis paketas grindžiamas reliatyvistinės superpozicijos metodu, kuriuo tikslūs skaičiavimai atliekami, kai į juos įtraukiamos valentinės–valentinės, kamieno–valentinės, kamieno ir kamieno–kamieno elektronų koreliacijos per konfigūracinių būsenų funkcijas (KBF). Tai veda prie didelės KBF erdvės, todėl pagal šį metodą sunkiau atlikti pačius skaičiavimus. Darbe pristatomas tolesnis antrosios eilės trikdymų teorija grįsto metodo (G. Gaigalas, P. Rynkun, L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core–valence correlations, Lith. J. Phys. 64(1), 20–39 (2024), https://doi.org/10.3952/physics.2024.64.1.3) ir (G. Gaigalas, P. Rynkun, L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core correlations, Lith. J. Phys. 64(2), 73–81 (2024), https://doi.org/10.3952/physics.2024.64.2.1), skirto svarbiausioms KBF, turinčioms didžiausią įtaką kamieno–valentinėms, kamieno ir kamieno–kamieno koreliacijoms, surasti, tobulinimas. Šis metodas paremtas reliatyvistinės superpozicijos ir stacionariosios antrosios eilės Relėjaus ir Šrėdingerio daugelio kūnų trikdymų teorijos neredukuotinėje tensorinėje formoje metodų deriniu.
Darbe pateiktame trikdymų teorijos išplėtime atsižvelgiama į elektronų kamieno–valentines, kamieno ir kamieno–kamieno koreliacijas, kai atomas ar jonas turi bet kokį valentinių elektronų skaičių. O į kitas koreliacijas jame atsižvelgiama tradiciniu būdu. Tai leidžia gerokai sumažinti KBF erdvę skaičiuojant sudėtingų atomų ir jonų įvairias charakteristikas. Taip pat darbe pateikiamas pavyzdys, parodantis, kaip šiuo metodu atlikti Fe XV jono energijos spektro struktūros ir E1 šuolių charakteristikų skaičiavimus.

* Skiriama šiuolaikinės teorinės fizikos Lietuvoje pradininko, „Lietuvos fizikos rinkinio“ iniciatoriaus akad. Adolfo Jucio (1904–1974) gimimo ir mirties sukaktims paminėti.


References / Nuorodos

[1] G. Gaigalas, P. Rynkun, and L. Kitovienė, Secondorder Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core–valence correlations, Lith. J. Phys. 64(1), 20–39 (2024),
https://doi.org/10.3952/physics.2024.64.1.3
[2] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second order of Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core correlations, Lith. J. Phys. 64(2), 73–81 (2024),
https://doi.org/10.3952/physics.2024.64.2.1
[3] I.P. Grant, Relativistic Quantum Theory of Atoms and Molecules (Springer, New York, 2007),
https://doi.org/10.1007/978-0-387-35069-1
[4] C. Froese Fischer, M. Godefroid, T. Brage, P. Jönsson, and G. Gaigalas, Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions, J. Phys. B 49(18), 182004 (2016),
https://doi.org/10.1088/0953-4075/49/18/182004
[5] I. Lindgren and J. Morrison, Atomic Many-body Theory (Springer-Verlag Berlin, Heidelberg, New York, 1982),
https://doi.org/10.1007/978-3-642-96614-9
[6] G. Merkelis, G. Gaigalas, and Z. Rudzikas, Irreducible tensorial form of the effective Hamiltonian of an atom and the diagrammatic representation in the first two orders of the stationary perturbation theory, Liet. Fiz. Rink. (Sov. Phys. Coll.) 25, 14–31 (1985) [in Russian]
[7] G. Merkelis, G. Gaigalas, J. Kaniauskas, and Z. Rudzikas, Application of the graphical method of the angular momentum theory to the study of the stationary perturbation series, Izvest. Acad. Nauk SSSR, Phys. Coll. 50, 1403–1410 (1986) [in Russian]
[8] G. Gaigalas, Irreducible Tensorial Form of the Stationary Perturbation Theory for Atoms and Ions with Open Shells, PhD Thesis (Institute of Physics, Vilnius, 1989) [in Russian]
[9] P. Jönsson, G. Gaigalas, J. Bieroń, C. Froese Fischer, and I.P. Grant, New version: GRASP2K relativistic atomic structure package, Comput. Phys. Commun. 184(9), 2197–2203 (2013),
https://doi.org/10.1016/j.cpc.2013.02.016
[10] C. Froese Fischer, G. Gaigalas, P. Jönsson, and J. Bieroń, GRASP2018 – A Fortran 95 version of the general relativistic atomic structure package, Comput. Phys. Commun. 237, 184–187 (2019),
https://doi.org/10.1016/j.cpc.2018.10.032
[11] P. Jönsson, M. Godefroid, G. Gaigalas, J. Ekman, J. Grumer, W. Li, J. Li, T. Brage, I.P. Grant, J. Bieroń, and C. Froese Fischer, An introduction to relativistic theory as implemented in GRASP, Atoms 11, 7 (2023),
https://doi.org/10.3390/atoms11010007
[12] G. Gaigalas, A program library for computing pure spin-angular coefficients for one- and two-particle operators in relativistic atomic theory, Atoms 10(4), 129 (2022),
https://doi.org/10.3390/atoms10040129
[13] G. Gaigalas and Z. Rudzikas, On the secondly quantized theory of the many-electron atom, J. Phys. B 29(15), 3303 (1996),
https://doi.org/10.1088/0953-4075/29/15/007
[14] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, An efficient approach for spin-angular integrations in atomic structure calculations, J. Phys. B 30(17), 3747 (1997),
https://doi.org/10.1088/0953-4075/30/17/006
[15] G. Gaigalas, O. Scharf, and S. Fritzsche, Maple procedures for the coupling of angular momenta. VIII. Spin-angular coefficients for single-shell configurations, Comput. Phys. Commun. 166, 141–169 (2005),
https://doi.org/10.1016/j.cpc.2004.11.003
[16] Y.T. Li, K. Wang, R. Si, M. Godefroid, G. Gaigalas, Ch.Y. Chen, and P. Jönsson, Reducing the computational load – atomic multiconfiguration calculations based on configuration state function generators, Comput. Phys. Commun. 283, 108562 (2023),
https://doi.org/10.1016/j.cpc.2022.108562
[17] P. Jönsson, G. Gaigalas, Ch. F. Fischer, J. Bieroń, I.P. Grant, T. Brage, J. Ekman, M. Godefroid, J. Grumer, J. Li, and W. Li, GRASP manual for users, Atoms 11, 68 (2023),
https://doi.org/10.3390/atoms11040068
[18] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2023), NIST Atomic Spectra Database, Version 5.11 (National Institute of Standards and Technology, Gaithersburg, MD),
https://www.nist.gov/pml/atomic-spectra-database,
https://doi.org/10.18434/T4W30F
[19] P. Rynkun, S. Banerjee, G. Gaigalas, M. Tanaka, L. Radžiūtė, and D. Kato, Theoretical investigation of energy levels and transition for Ce IV, Astron. Astrophys. 658, A82 (2022),
https://doi.org/10.1051/0004-6361/202141513
[20] G. Gaigalas, P. Rynkun, S. Banerjee, M. Tanaka, D. Kato, and L. Radžiūtė, Theoretical investigation of energy levels and transition for Pr IV, MNRAS 517, 281 (2022),
https://doi.org/10.1093/mnras/stac2401
[21] R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, CA, USA, 1981),
https://doi.org/10.1525/9780520906150