Received 2 April 2024; revised 6 May 2024; accepted 10 May 2024
References /
Nuorodos
[1] H.-P. Breuer and F. Petruccione,
The Theory of Open
Quantum Systems (Oxford University Press, 2002),
https://doi.org/10.1007/3-540-44874-8_4
[2] U. Weiss,
Quantum Dissipative Systems (World
Scientific, 2008),
https://doi.org/10.1142/9789812791795
[3] I. de Vega and D. Alonso, Dynamics of non-Markovian open
quantum systems, Rev. Mod. Phys.
89, 015001 (2017),
https://doi.org/10.1103/RevModPhys.89.015001
[4] M. Razavy,
Classical and Quantum Dissipative Systems
(Imperial College Press, 2005),
https://doi.org/10.1142/9781860949180
[5] K. Zhou and B. Liu,
Molecular Dynamics Simulation:
Fundamentals and Applications (Elsevier, 2022),
https://doi.org/10.1016/C2017-0-04711-0
[6] J.S. Bader and B.J. Berne, Quantum and classical relaxation
rates from classical simulations, J. Chem. Phys.
100,
8359 (1994),
https://doi.org/10.1063/1.466780
[7] H. Hasegawa, Classical small systems coupled to finite
baths, Phys. Rev. E
83, 021104 (2011),
https://doi.org/10.1103/PhysRevE.83.021104
[8] A.O. Caldeira and A.J. Leggett, Quantum tunnelling in a
dissipative system, Ann. Phys.
149, 374 (1983),
https://doi.org/10.1016/0003-4916(83)90202-6
[9] G.W. Ford and M. Kac, On the quantum Langevin equation, J.
Stat. Phys.
46, 803 (1987),
https://doi.org/10.1007/BF01011142
[10] H. Hasegawa, Responses to applied forces and the Jarzynski
equality in classical oscillator systems coupled to finite
baths: An exactly solvable nondissipative nonergodic model,
Phys. Rev. E
84, 011145 (2011),
https://doi.org/10.1103/PhysRevE.84.011145
[11] J.S. Briggs and A. Eisfeld, Coherent quantum states from
classical oscillator amplitudes, Phys. Rev. A
85, 052111
(2012),
https://doi.org/10.1103/PhysRevA.85.052111
[12] T.E. Skinner, Exact mapping of the quantum states in
arbitrary
N-level systems to the positions of classical
coupled oscillators, Phys. Rev. A
88, 012110 (2013),
https://doi.org/10.1103/PhysRevA.88.012110
[13] T. Mančal, Excitation energy transfer in a classical
analogue of photosynthetic antennae, J. Phys. Chem. B
117,
11282 (2013),
https://doi.org/10.1021/jp402101z
[14] A. Montoya-Castillo, T.C. Berkelbach, and D.R. Reichman,
Extending the applicability of Redfield theories into highly
non-Markovian regimes, J. Chem. Phys.
143, 194108
(2015),
https://doi.org/10.1063/1.4935443
[15] J.H. Fetherolf and T.C. Berkelbach, Linear and nonlinear
spectroscopy from quantum master equations, J. Chem. Phys.
147,
244109 (2017),
https://doi.org/10.1063/1.5006824
[16] H.-H. Teh, B.-Y. Jin, and Y.-C. Cheng, Frozen-mode small
polaron quantum master equation with variational bound for
excitation energy transfer in molecular aggregates, J. Chem.
Phys.
150, 224110 (2019),
https://doi.org/10.1063/1.5096287
[17] A.A. Kananenka, C.-Y. Hsieh, J. Cao, and E. Geva, Accurate
long-time mixed quantum-classical Liouville dynamics via the
transfer tensor method, J. Phys. Chem. Lett.
7, 4809
(2016),
https://doi.org/10.1021/acs.jpclett.6b02389
[18] C. Chuang, D.I. Bennett, J.R. Caram, A. Aspuru-Guzik, M.G.
Bawendi, and J. Cao, Generalized Kasha's model:
T-dependent
spectroscopy reveals short-range structures of 2D excitonic
systems, Chem
5, 3135 (2019),
https://doi.org/10.1016/j.chempr.2019.08.013
[19] A. Gelzinis and L. Valkunas, Analytical derivation of
equilibrium state for open quantum system, J. Chem. Phys.
152,
051103 (2020),
https://doi.org/10.1063/1.5141519
[20] Y. Lai and E. Geva, On simulating the dynamics of
electronic populations and coherences via quantum master
equations based on treating off-diagonal electronic coupling
terms as a small perturbation, J. Chem. Phys.
155,
204101 (2021),
https://doi.org/10.1063/5.0069313
[21] J.G. Simmonds and J.E. Mann,
A First Look at
Perturbation Theory (Dover Publications, 1997)
[22] A.H. Nayfeh,
Introduction to Perturbation Techniques
(Wiley-VCH, 1981)
[23] M.H. Holmes,
Introduction to Perturbation Methods
(Springer, 1995),
https://doi.org/10.1007/978-1-4612-5347-1
[24] T.C. Berkelbach, D.R. Reichman, and T.E. Markland, Reduced
density matrix hybrid approach: An efficient and accurate method
for adiabatic and non-adiabatic quantum dynamics, J. Chem. Phys.
136, 034113 (2012),
https://doi.org/10.1063/1.3671372