[PDF]    https://doi.org/10.3952/physics.2024.64.3.3

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 177–188 (2024)

FFECT OF CaCO3 , SrCO3  AND BaCO3  ADDITIONS ON THE MICROSTRUCTURE AND ELECTRICAL CHARACTERISTICS OF SnO2-BASED VARISTOR CERAMICS
Alexei Gaponov
Oles Honchar Dnipro National University, 72 Gagarin Avenue, 49010 Dnipro, Ukraine
Email: alexei_gaponov@ukr.net

Received 18 December 2023; revised 2 May 2024; accepted 25 May 2024

The ceramic varistors SnO2–Co3O4–Nb2O5–Cr2O3 with the addition of CaCO3, SrCO3 or BaCO3 were sintered at temperatures 1250 and 1350°C, then their structures and electrical properties were studied. In all samples, the SnO2 cassiterite phase with a rutile-type structure and the Co2SnO4 phase with a spinel-type structure were observed. All materials exhibited a highly nonlinear dependence of the current density on the electric field with the nonlinearity coefficient 24–50. When alkaline earth metal carbonates were added, the grain size of all samples decreased and the electric field E1 increased. The addition of CaCO3 lead to the decrease of the low-field electrical conductivity of varistors. The lowest low-field conductivities 4·10–13 and 6·10–13 Ω–1 cm–1 were found in the samples with CaCO3 addition baked at 1250 and 1350°C, respectively. The observed effect is due to the increase of the potential barrier height at the SnO2 grain boundaries by 7 and 13%, respectively, and the decrease of the grain size by 26 and 28% compared to SnO2-based varistor ceramics without CaCO3 addition.
Keywords: electrical conductivity, alkaline earth metal carbonates, tin oxide, varistor, ceramics
PACS: 73.30.+y, 73.40.Ty, 73.50.Fq

CaCO3, SrCO3 IR BaCO3 PRIEMAIŠŲ POVEIKIS VARISTORINIŲ SnO2 PAGRINDO KERAMIKŲ MIKROSTRUKTŪRAI IR ELEKTRINĖMS CHARAKTERISTIKOMS
Alexei Gaponov

Olesio Hončaro nacionalinis universitetas, Dnipras, Ukraina


References / Nuorodos

[1] W. Gopel and K.D. Schierbaum, SnO2 sensors: current status and future prospects, Sens. Actuat. B 26(1–3), 1–12 (1995),
https://doi.org/10.1016/0925-4005(94)01546-t
[2] A.B. Glot, Yu.N. Proshkin, and A.M. Nadzhafzade, Electrical properties of tin dioxide and zinc oxide ceramics, in: Ceramics Today – Tomorrow’s Ceramics, Materials science monographs, Vol. 66C, ed. P. Vincenzini (Elsevier, 1991) pp. 2171–2180,
https://shop.elsevier.com/books/ceramics-today-tomorrows-ceramics/vincenzini/978-0-444-88365-0
[3] P.R. Bueno, J.A. Varela, and E. Longo, SnO2, ZnO and related polycrystalline compound semiconductors: An overview and review on the voltage-dependent resistance (non-ohmic) feature, J. Eur. Ceram. Soc. 28(3), 505–529 (2008),
https://doi.org/10.1016/j.jeurceramsoc.2007.06.011
[4] S.A. Pianaro, P.R. Bueno, E. Longo, and J.A. Varela, A new SnO2-based varistor system, J. Mater. Sci. Lett. 14(10), 692–694 (1995),
https://doi.org/10.1007/BF00253373
[5] Q.Y. Wei, J.L. He, and J. Hu, Dependence of residual voltage ratio behavior of SnO2-based varistors on Nb2O5 addition, Sci. China Tech. Sci. 54(6), 1415–1418 (2011),
https://doi.org/10.1007/s11431-011-4375-3
[6] S.A. Pianaro, P.R. Bueno, E. Longo, and J.A. Varela, Microstructure and electric properties of a SnO2 based varistor, Ceram. Int. 25(1), 1–6 (1999),
https://doi.org/10.1016/S0272-8842(97)00076-X
[7] G. Hu, J. Zhu, H. Yang, and F. Wang, Effect of CuO addition on the microstructure and electrical properties of SnO2-based varistor, J. Mater. Sci. 24, 2944–2949 (2013),
https://doi.org/10.1007/s10854-013-1195-1
[8] A.B. Glot, R. Bulpett, A.I. Ivon, and P.M. Gallegos-Acevedo, Electrical properties of SnO2 ceramics for low voltage varistors, Phys. B 457, 108–112 (2015),
https://doi.org/10.1016/j.physb.2014.09.026
[9] A.V. Gaponov, O.V. Vorobiov, and A.M. Vasyliev, Electrical parameters of SnO2 based varistor ceramics with CaO and BaO additions, Phys. Chem. Solid State 17(1), 81–87 (2016),
https://doi.org/10.15330/pcss.17.1.81-87
[10] M. Maleki Shahraki, M. Golmohammad, I. Safaee, and M. Delshad Chermahini, The control of abnormal grain growth in low-voltage SnO2 varistors by microseed addition, Ceram. Int. 44(3), 3388–3393 (2018),
https://doi.org/10.1016/j.ceramint.2017.11.129
[11] D. Liu, W. Wang, K. Cheng, Q. Xie, Y. Zhou, and H. Zhao, High voltage gradient and low leakage current SnO2 varistor ceramics doped with Y2O3 and Nb2O5, Mater. Chem. Phys. 242, 122526 (2020),
https://doi.org/10.1016/j.matchemphys.2019.122526
[12] M. Abdollahi, M. Reza Nilforoushan, M. Maleki Shahraki, M. Delshad Chermahini, and M. Moradizadeh, The degradation behavior of high-voltage SnO2 based varistors sintered at different temperatures, Ceram. Int. 46(8, part B), 11577–11583 (2020),
https://doi.org/10.1016/j.ceramint.2020.01.186
[13] M.I. Miranda-Lopez, E.A. Padilla-Zarate, M.B. Hernandez, L.A. Falcon-Franco, S. García-Villarreal, L.V. García-Quinonez, P. Zambrano-Robledo, A. Toxqui-Teran, and J.A. Aguilar-Martínez, Comparison between the use of Co3O4 or CoO on microstructure and electrical properties in a varistor system based on SnO2, J. Alloys Compd. 824, 153952 (2020),
https://doi.org/10.1016/j.jallcom.2020.153952
[14] D. Liu, W. Wang, K. Cheng, Q. Xie, Y. Zhou, and H. Zhao, High voltage gradient and low leakage current SnO2 varistor ceramics doped with Y2O3 and Nb2O5, Mater. Chem. Phys. 242, 122526 (2020),
https://doi.org/10.1016/j.matchemphys.2019.122526
[15] G. Hu, J. Zhu, H. Yang, and F. Wang, Effect of Cr2O3 addition on the microstructure and electrical properties of SnO2-based varistor, J. Mater. Sci. 24, 1735–1740 (2013),
https://doi.org/10.1007/s10854-012-1007-z
[16] C.-M. Wang, J.-F. Wang, C.-L. Wang, H.-C. Chen, W.-B. Su, G.-Z. Zang, P. Qi, M.-L. Zhao, and B.-Q. Ming, Effects of barium on the nonlinear electrical characteristics and dielectric properties of SnO2-based varistors, Chin. Phys. 13(11), 1936–1940 (2004),
https://doi.org/10.1088/1009-1963/13/11/031
[17] J.-F. Wang, H.-C. Chen, W.-B. Su, G.-Z. Zang, B. Wang, and R.-W. Gao, Effects of Sr on the microstructure and electrical properties of (Co, Ta)-doped SnO2 varistors, J. Alloys Compd. 413, 35–39 (2006),
https://doi.org/10.1016/j.jallcom.2005.05.041
[18] S.R. Dhage, V. Ravi, and O.B. Yang, Varistor property of SnO2·CoO·Ta2O5 ceramic modified by barium and strontium, J. Alloys Compd. 466(1–2), 483–487 (2008),
https://doi.org/10.1016/j.jallcom.2007.11.062
[19] P. Qi, J.-F. Wang, H.-C. Chen, W.-B. Su, W.-X. Wang, G.-Z. Zang, and C.-M. Wang, Nonlinear electrical properties of (Sr, Co, Nb)-doped SnO2 varistors, Acta Phys. Sin. 52(7), 1752–1755 (2003),
https://doi.org/10.7498/aps.52.1752
[20] J.A. Aguilar-Martinez, A. Duran-Regules, A.B. Glot, M.B. Hernandez, M.I. Pech-Canul, and J. Castillo-Torres, Effect of CaO on the microstructure and non-ohmic properties of (Co, Sb)-doped SnO2 varistors, Rev. Mex. Fis. 54(1), 20–24 (2008),
https://rmf.smf.mx/ojs/index.php/rmf/article/view/3582
[21] J.A. Aguilar-Martinez, E. Rodriguez, S. Garcia-Villarreal, L. Falcon-Franco, and M.B. Hernandez, Effect of Ca, Sr and Ba on the structure, morphology and electrical properties of (Co,Sb)-doped SnO2 varistors, Mater. Chem. Phys. 153, 180–186 (2015),
https://doi.org/10.1016/j.matchemphys.2015.01.001
[22] M.I. Miranda-Lopez, A.E. Marino-Gamez, M.B. Hernandez, P.F. Martinez-Ortiz, L. Falcon-Franco, S. Garcia-Villarreal, L. Garcia-Ortiz, and J.A. Aguilar-Martinez, Influence of MCO3 (M=Ca, Sr, Ba)-doping on the non-ohmic properties of the ceramic varistor system SnO2–Co3O4–Cr2O3–Nb2O5, Ceram. Int. 47(3), 4006–4011 (2021),
https://doi.org/10.1016/j.ceramint.2020.09.267
[23] A.V. Gaponov and A.B. Glot, Varistor properties of SnO2–Co3O4–Nb2O5–Cr2O3 ceramics baked at different temperatures, Visnyk Dnipro univ. 16(2), 119–124 (2008) [in Ukrainian]
[24] M.I. Mendelson, Average grain size in polycrystalline ceramics, J. Am. Ceram. Soc. 52(8), 443–446 (1969),
https://doi.org/10.1111/j.1151-2916.1969.tb11975.x
[25] Z.-Y. Lu, Z. Chen, and J.-Q. Wu, SnO2-based varistors capable of withstanding surge current, J. Ceram. Soc. Japan 117(7), 851–855 (2009),
https://doi.org/10.2109/jcersj2.117.851
[26] M.B. Hernandez, S. Garcia-Villareal, R.F. Cienfuegos-Pelaes, C. Gomez-Rodriguez, and J.A. Aguilar-Martinez, Structural, microstructure and electric properties of SnO2-Sb2O5-Cr2O3 varistor ceramics doped with Co2SnO4 spinel phase previously synthesized, J. Alloys Compd. 699, 738–744 (2017),
https://doi.org/10.1016/j.jallcom.2016.12.419
[27] X. Fu, F. Jiang, R. Gao, and Z. Peng, Microstructure and nonohmic properties of SnO2-Ta2O5-ZnO system doped with ZrO2, Sci. World. J. 2014, 754890 (2014),
https://doi.org/10.1155/2014/754890
[28] H.S. Irion, E.C.F. de Souza, A.V.C. de Andrade, S.R.M. Antunes, and A.C. Antunes, Effect of Pr6O11 doping in electrical and microstructural properties of SnO2-based varistors, Acta Sci. Technol. 36(2), 237–244 (2014),
https://doi.org/10.4025/actascitechnol.v36i2.17995
[29] M.G. Masteghin and M.O. Orlandi, Grain-boundary resistance and nonlinear coefficient correlation for SnO2-based varistors, Mater. Res. 19(6), 1286–1291 (2016),
https://doi.org/10.1590/1980-5373-mr-2016-0210
[30] Z.M. Jarzebski and J.P. Marton, Physical properties of SnO2 materials. III. Optical properties, J. Electrochem. Soc. 123(10), 333C–346C (1976), 
https://doi.org/10.1149/1.2132647
[31] A.V. Gaponov, Humidity sensors based on SnO2–Co3O4–Nb2O5–Cr2O3 semiconductor varistor ceramics, Sens. Elektron. Mikrosist. Tehnol. 15(3), 19–30 (2018),
https://doi.org/10.18524/1815-7459.2018.3.142041
[32] A.V. Gaponov and O.V. Abramova, Electrical properties of tin oxide based varistors with PbO addition in humid air, Lith. J. Phys. 63(1), 8–14 (2023),
https://doi.org/10.3952/physics.2023.63.1.2
[33] A.B. Glot and Yu.A. Perepelitsa, The inhomogeneity of low voltage zinc oxide varistors, Electron. Technics. Ser. 5. Radioparts and Radiocomponents 2(71), 35–37 (1988)