Received 18 December 2023; revised 2 May 2024; accepted 25 May
2024
References /
Nuorodos
[1] W. Gopel and K.D. Schierbaum, SnO
2 sensors:
current status and future prospects, Sens. Actuat. B
26(1–3),
1–12 (1995),
https://doi.org/10.1016/0925-4005(94)01546-t
[2] A.B. Glot, Yu.N. Proshkin, and A.M. Nadzhafzade, Electrical
properties of tin dioxide and zinc oxide ceramics, in:
Ceramics
Today – Tomorrow’s Ceramics, Materials science monographs,
Vol. 66C, ed. P. Vincenzini (Elsevier, 1991) pp. 2171–2180,
https://shop.elsevier.com/books/ceramics-today-tomorrows-ceramics/vincenzini/978-0-444-88365-0
[3] P.R. Bueno, J.A. Varela, and E. Longo, SnO
2, ZnO
and related polycrystalline compound semiconductors: An overview
and review on the voltage-dependent resistance (non-ohmic)
feature, J. Eur. Ceram. Soc.
28(3), 505–529 (2008),
https://doi.org/10.1016/j.jeurceramsoc.2007.06.011
[4] S.A. Pianaro, P.R. Bueno, E. Longo, and J.A. Varela, A new
SnO
2-based varistor system, J. Mater. Sci. Lett.
14(10),
692–694 (1995),
https://doi.org/10.1007/BF00253373
[5] Q.Y. Wei, J.L. He, and J. Hu, Dependence of residual voltage
ratio behavior of SnO
2-based varistors on Nb
2O
5
addition, Sci. China Tech. Sci.
54(6), 1415–1418 (2011),
https://doi.org/10.1007/s11431-011-4375-3
[6] S.A. Pianaro, P.R. Bueno, E. Longo, and J.A. Varela,
Microstructure and electric properties of a SnO
2
based varistor, Ceram. Int.
25(1), 1–6 (1999),
https://doi.org/10.1016/S0272-8842(97)00076-X
[7] G. Hu, J. Zhu, H. Yang, and F. Wang, Effect of CuO addition
on the microstructure and electrical properties of SnO
2-based
varistor, J. Mater. Sci. 24, 2944–2949 (2013),
https://doi.org/10.1007/s10854-013-1195-1
[8] A.B. Glot, R. Bulpett, A.I. Ivon, and P.M. Gallegos-Acevedo,
Electrical properties of SnO
2 ceramics for low
voltage varistors, Phys. B
457, 108–112 (2015),
https://doi.org/10.1016/j.physb.2014.09.026
[9] A.V. Gaponov, O.V. Vorobiov, and A.M. Vasyliev, Electrical
parameters of SnO
2 based varistor ceramics with CaO
and BaO additions, Phys. Chem. Solid State
17(1), 81–87
(2016),
https://doi.org/10.15330/pcss.17.1.81-87
[10] M. Maleki Shahraki, M. Golmohammad, I. Safaee, and M.
Delshad Chermahini, The control of abnormal grain growth in
low-voltage SnO
2 varistors by microseed addition,
Ceram. Int. 44(3), 3388–3393 (2018),
https://doi.org/10.1016/j.ceramint.2017.11.129
[11] D. Liu, W. Wang, K. Cheng, Q. Xie, Y. Zhou, and H. Zhao,
High voltage gradient and low leakage current SnO
2
varistor ceramics doped with Y
2O
3 and Nb
2O
5,
Mater. Chem. Phys.
242, 122526 (2020),
https://doi.org/10.1016/j.matchemphys.2019.122526
[12] M. Abdollahi, M. Reza Nilforoushan, M. Maleki Shahraki, M.
Delshad Chermahini, and M. Moradizadeh, The degradation behavior
of high-voltage SnO
2 based varistors sintered at
different temperatures, Ceram. Int.
46(8, part B),
11577–11583 (2020),
https://doi.org/10.1016/j.ceramint.2020.01.186
[13] M.I. Miranda-Lopez, E.A. Padilla-Zarate, M.B. Hernandez,
L.A. Falcon-Franco, S. García-Villarreal, L.V. García-Quinonez,
P. Zambrano-Robledo, A. Toxqui-Teran, and J.A. Aguilar-Martínez,
Comparison between the use of Co
3O
4 or CoO
on microstructure and electrical properties in a varistor system
based on SnO
2, J. Alloys Compd.
824, 153952
(2020),
https://doi.org/10.1016/j.jallcom.2020.153952
[14] D. Liu, W. Wang, K. Cheng, Q. Xie, Y. Zhou, and H. Zhao,
High voltage gradient and low leakage current SnO
2
varistor ceramics doped with Y
2O
3 and Nb
2O
5,
Mater. Chem. Phys.
242, 122526 (2020),
https://doi.org/10.1016/j.matchemphys.2019.122526
[15] G. Hu, J. Zhu, H. Yang, and F. Wang, Effect of Cr
2O
3
addition on the microstructure and electrical properties of SnO
2-based
varistor, J. Mater. Sci.
24, 1735–1740 (2013),
https://doi.org/10.1007/s10854-012-1007-z
[16] C.-M. Wang, J.-F. Wang, C.-L. Wang, H.-C. Chen, W.-B. Su,
G.-Z. Zang, P. Qi, M.-L. Zhao, and B.-Q. Ming, Effects of barium
on the nonlinear electrical characteristics and dielectric
properties of SnO
2-based varistors, Chin. Phys.
13(11),
1936–1940 (2004),
https://doi.org/10.1088/1009-1963/13/11/031
[17] J.-F. Wang, H.-C. Chen, W.-B. Su, G.-Z. Zang, B. Wang, and
R.-W. Gao, Effects of Sr on the microstructure and electrical
properties of (Co, Ta)-doped SnO
2 varistors, J.
Alloys Compd.
413, 35–39 (2006),
https://doi.org/10.1016/j.jallcom.2005.05.041
[18] S.R. Dhage, V. Ravi, and O.B. Yang, Varistor property of
SnO
2·CoO·Ta
2O
5 ceramic modified
by barium and strontium, J. Alloys Compd.
466(1–2),
483–487 (2008),
https://doi.org/10.1016/j.jallcom.2007.11.062
[19] P. Qi, J.-F. Wang, H.-C. Chen, W.-B. Su, W.-X. Wang, G.-Z.
Zang, and C.-M. Wang, Nonlinear electrical properties of (Sr,
Co, Nb)-doped SnO
2 varistors, Acta Phys. Sin.
52(7),
1752–1755 (2003),
https://doi.org/10.7498/aps.52.1752
[20] J.A. Aguilar-Martinez, A. Duran-Regules, A.B. Glot, M.B.
Hernandez, M.I. Pech-Canul, and J. Castillo-Torres, Effect of
CaO on the microstructure and non-ohmic properties of (Co,
Sb)-doped SnO
2 varistors, Rev. Mex. Fis.
54(1),
20–24 (2008),
https://rmf.smf.mx/ojs/index.php/rmf/article/view/3582
[21] J.A. Aguilar-Martinez, E. Rodriguez, S. Garcia-Villarreal,
L. Falcon-Franco, and M.B. Hernandez, Effect of Ca, Sr and Ba on
the structure, morphology and electrical properties of
(Co,Sb)-doped SnO
2 varistors, Mater. Chem. Phys.
153,
180–186 (2015),
https://doi.org/10.1016/j.matchemphys.2015.01.001
[22] M.I. Miranda-Lopez, A.E. Marino-Gamez, M.B. Hernandez, P.F.
Martinez-Ortiz, L. Falcon-Franco, S. Garcia-Villarreal, L.
Garcia-Ortiz, and J.A. Aguilar-Martinez, Influence of MCO
3
(M=Ca, Sr, Ba)-doping on the non-ohmic properties of the ceramic
varistor system SnO
2–Co
3O
4–Cr
2O
3–Nb
2O
5,
Ceram. Int.
47(3), 4006–4011 (2021),
https://doi.org/10.1016/j.ceramint.2020.09.267
[23] A.V. Gaponov and A.B. Glot, Varistor properties of SnO
2–Co
3O
4–Nb
2O
5–Cr
2O
3
ceramics baked at different temperatures, Visnyk Dnipro univ.
16(2),
119–124 (2008) [in Ukrainian]
[24] M.I. Mendelson, Average grain size in polycrystalline
ceramics, J. Am. Ceram. Soc.
52(8), 443–446 (1969),
https://doi.org/10.1111/j.1151-2916.1969.tb11975.x
[25] Z.-Y. Lu, Z. Chen, and J.-Q. Wu, SnO
2-based
varistors capable of withstanding surge current, J. Ceram. Soc.
Japan
117(7), 851–855 (2009),
https://doi.org/10.2109/jcersj2.117.851
[26] M.B. Hernandez, S. Garcia-Villareal, R.F.
Cienfuegos-Pelaes, C. Gomez-Rodriguez, and J.A.
Aguilar-Martinez, Structural, microstructure and electric
properties of SnO
2-Sb
2O
5-Cr
2O
3
varistor ceramics doped with Co
2SnO
4
spinel phase previously synthesized, J. Alloys Compd.
699,
738–744 (2017),
https://doi.org/10.1016/j.jallcom.2016.12.419
[27] X. Fu, F. Jiang, R. Gao, and Z. Peng, Microstructure and
nonohmic properties of SnO
2-Ta
2O
5-ZnO
system doped with ZrO
2, Sci. World. J.
2014,
754890 (2014),
https://doi.org/10.1155/2014/754890
[28] H.S. Irion, E.C.F. de Souza, A.V.C. de Andrade, S.R.M.
Antunes, and A.C. Antunes, Effect of Pr
6O
11
doping in electrical and microstructural properties of SnO
2-based
varistors, Acta Sci. Technol.
36(2), 237–244 (2014),
https://doi.org/10.4025/actascitechnol.v36i2.17995
[29] M.G. Masteghin and M.O. Orlandi, Grain-boundary resistance
and nonlinear coefficient correlation for SnO
2-based
varistors, Mater. Res.
19(6), 1286–1291 (2016),
https://doi.org/10.1590/1980-5373-mr-2016-0210
[30] Z.M. Jarzebski and J.P. Marton, Physical properties of SnO
2
materials. III. Optical properties, J. Electrochem. Soc.
123(10),
333C–346C (1976),
https://doi.org/10.1149/1.2132647
[31] A.V. Gaponov, Humidity sensors based on SnO
2–Co
3O
4–Nb
2O
5–Cr
2O
3
semiconductor varistor ceramics, Sens. Elektron. Mikrosist.
Tehnol.
15(3), 19–30 (2018),
https://doi.org/10.18524/1815-7459.2018.3.142041
[32] A.V. Gaponov and O.V. Abramova, Electrical properties of
tin oxide based varistors with PbO addition in humid air, Lith.
J. Phys.
63(1), 8–14 (2023),
https://doi.org/10.3952/physics.2023.63.1.2
[33] A.B. Glot and Yu.A. Perepelitsa, The inhomogeneity of low
voltage zinc oxide varistors, Electron. Technics. Ser. 5.
Radioparts and Radiocomponents
2(71), 35–37 (1988)