[PDF]    https://doi.org/10.3952/physics.2024.64.3.4

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 189–202 (2024)

VARIATIONS OF BLACK CARBON, PARTICULATE MATTER AND NITROGEN OXIDES MASS CONCENTRATIONS IN URBAN ENVIRONMENT WITH RESPECT TO WINTER HEATING PERIOD AND METEOROLOGICAL CONDITIONS
Daria Pashneva, Agnė Minderytė, Lina Davulienė, Vadimas Dudoitis, and Steigvilė Byčenkienė
SRI Center for Physical Sciences and Technology, Department of Environmental Research, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: daria.pashneva@ftmc.lt

Received 12 March 2024; revised 3 June 2024; accepted 3 June 2024

The atmospheric concentrations of particulate pollution are of great scientific concern due to their impact on both human health and environment. This study aimed to investigate the concentration of black carbon (BC), particulate matter with an aerodynamic diameter of less than 10 micrometres (PM10) and nitrogen oxides (NOx) at an urban background environment throughout the year, and understand the impact of winter heating and meteorology on its concentration level. The campaign covered heating and non-heating periods, from 1 June 2021 to 31 May 2022. During the heating period, the mass concentrations of BC, PM10 and NOx were 1.17, 24.9 and 19.4 μg m–3, respectively. The analysis revealed that the mass concentrations of BC and NOx were 1.9 and 1.4 times greater during the heating period, respectively, compared to the non-heating period. In contrast, PM10 remained almost constant during the heating (19.4 μg m–3) and non-heating periods (20.0 μg m–3). Throughout the year, the BC mass concentration was dominated by BCFF (71.2%) originating from fossil fuel combustion with a maximum (8.43 μg m–3) during the heating period. Moreover, wind speed presented a weak negative correlation with BC (r = –0.40), PM10 (r = –0.19) and NOx (r = –0.40) during the heating period.
Keywords: air pollution, black carbon, source apportionment, fossil fuel, biomass burning
PACS: 92.60.Sz, 92.60.Mt, 92.60.hf

JUODOSIOS ANGLIES, KIETŲJŲ DALELIŲ IR AZOTO OKSIDŲ MASĖS KONCENTRACIJŲ KITIMAS MIESTO APLINKOJE, ATSIŽVELGIANT Į ŽIEMOS ŠILDYMO LAIKOTARPĮ IR METEOROLOGINES SĄLYGAS
Daria Pashneva, Agnė Minderytė, Lina Davulienė, Vadimas Dudoitis, Steigvilė Byčenkienė

Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Atmosferos tarša aerozolio arba kietosiomis dalelėmis (KD) kelia didelį mokslininkų susirūpinimą dėl jų poveikio žmonių sveikatai ir aplinkos taršai. Šio tyrimo tikslas – ištirti juodosios anglies (BC), kietųjų dalelių, kurių aerodinaminis skersmuo ne didesnis kaip 10 mikrometrų (KD10), ir azoto oksidų (NOx) koncentraciją miesto foninėje aplinkoje ištisus metus ir išsiaiškinti žiemos šildymo bei meteorologinių sąlygų įtaką jų koncentracijos lygiui. Matavimai vyko šildymo ir nešildymo sezonų metu nuo 2021 m. birželio 1 d. iki 2022 m. gegužės 31 d. Šildymo laikotarpiu BC, KD10 ir NOx masės koncentracijos ore siekė 1,17, 24,9 ir 19,4 μg m–3, atitinkamai. Analizė parodė, kad BC ir NOx masės koncentracijos lygiai šildymo laikotarpiu buvo 1,9 ir 1,4 karto, atitinkamai, didesnės palyginti su šiltuoju laikotarpiu. Priešingai, KD10 koncentracijos lygis šaltuoju sezonu (19,4 μg m–3) išliko panašus palyginti su šiltuoju laikotarpiu (20,0 μg m–3). Nustatyta, kad tyrimo metu vyravo iškastinio kuro deginimo kilmės juodosios anglies BCFF koncentracijos indėlis (71,2 %) į bendrą masės koncentraciją, kurios didžiausia stebėta vertė šildymo laikotarpiu siekė 8,43 μg m–3. Be to, pastebėta, kad šildymo laikotarpiu vėjo greitis turėjo silpną neigiamą koreliaciją su BC (r = –0,40), KD10 (r = –0,19) ir NOx (r = –0,40).


References / Nuorodos

[1] O.Α. Sindosi, N. Hatzianastassiou, G. Markozannes, E.C. Rizos, E. Ntzani, and A. Bartzokas, PM10 concentrations in a provincial city of inland Greece in the times of austerity and their relationship with meteorological and socioeconomic conditions, Water Air Soil Pollut. 232, 77 (2021),
https://doi.org/10.1007/s11270-021-05008-3
[2] N. Zioła, B. Błaszczak, and K. Klejnowski, Temporal variability of equivalent black carbon components in atmospheric air in Southern Poland, Atmosphere (Basel) 12, 119 (2021),
https://doi.org/10.3390/atmos12010119
[3] B. Alfoldy, M.M. Mahfouz, A. Gregorič, M. Ivančič, I. Ježek, and M. Rigler, Atmospheric concentrations and emission ratios of black carbon and nitrogen oxides in the Arabian/Persian gulf region, Atmos. Environ. 256, 118451 (2021),
https://doi.org/10.1016/j.atmosenv.2021.118451
[4] X. Liu, Y. Wei, X. Liu, L. Zu, B. Wang, S. Wang, R. Zhang, and R. Zhu, Effects of winter heating on urban black carbon: Characteristics, sources and its correlation with meteorological factors, Atmosphere (Basel) 13, 1071 (2022),
https://doi.org/10.3390/atmos13071071
[5] European Environment Agency, Air Quality in Europe 2021, EEA Report No. 15/2021 (Publications Office of the European Union, 2021),
https://www.eea.europa.eu/publications/air-quality-in-europe-2021/
[6] K. Bodor, M.M. Micheu, Á. Keresztesi, M.V. Birsan, I.A. Nita, Z. Bodor, S. Petres, A. Korodi, and R. Szép, Effects of PM10 and weather on respiratory and cardiovascular diseases in the Ciuc Basin (Romanian Carpathians), Atmosphere 12, 289 (2021),
https://doi.org/10.3390/atmos12020289
[7] M. Renzi, F. Forastiere, J. Schwartz, M. Davoli, P. Michelozzi, and M. Stafoggia, Long-term PM10 exposure and cause-specific mortality in the Latium Region (Italy): A difference-in-differences approach, Environ. Health Perspect. 127, 067004 (2019),
https://doi.org/10.1289/EHP3759
[8] C.B.B. Guerreiro, V. Foltescu, and F. de Leeuw, Air quality status and trends in Europe, Atmos. Environ. 98, 376 (2014),
https://doi.org/10.1016/j.atmosenv.2014.09.017
[9] X. Yangyang, Z. Bin, Z. Lin, and L. Rong, Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3, Particuology 20, 141-149 (2015),
https://doi.org/10.1016/j.partic.2015.01.003
[10] S.K. Pani, S.H. Wang, N.H. Lin, S. Chantara, C. Te Lee, and D. Thepnuan, Black carbon over an urban amosphere in Northern Peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks, Environ. Pollut. 259, 113871 (2020),
https://doi.org/10.1016/j.envpol.2019.113871
[11] H. Zhou, J. Lin, Y. Shen, F. Deng, Y. Gao, Y. Liu, H. Dong, Y. Zhang, Q. Sun, J. Fang, et al., Personal black carbon exposure and its determinants among elderly adults in urban China, Environ. Int. 138, 105607 (2020),
https://doi.org/10.1016/j.envint.2020.105607
[12] I. Cunha-Lopes, V. Martins, T. Faria, C. Correia, and S.M. Almeida, Children's exposure to sized-fractioned particulate matter and black carbon in an urban environment, Build. Environ. 155, 187 (2019),
https://doi.org/10.1016/j.buildenv.2019.03.045
[13] S.F. Suglia, A. Gryparis, R.O. Wright, J. Schwartz, and R.J. Wright, Association of black carbon with cognition among children in a prospective birth cohort study, Am. J. Epidemiol. 167, 280 (2008),
https://doi.org/10.1093/aje/kwm308
[14] M.P. Raju, P.D. Safai, S.M. Sonbawne, P.S. Buchunde, G. Pandithurai, and K.K. Dani, Black carbon aerosols over a high altitude station, Mahabaleshwar: Radiative forcing and source apportionment, Atmos. Pollut. Res. 11, 1408 (2020),
https://doi.org/10.1016/j.apr.2020.05.024
[15] M. Kucbel, A. Corsaro, B. Švédová, H. Raclavská, K. Raclavský, and D. Juchelková, Temporal and seasonal variations of black carbon in a highly polluted European city: Apportionment of potential sources and the effect of meteorological conditions, J. Environ. Manage. 203, 1178 (2017),
https://doi.org/10.1016/j.jenvman.2017.05.038
[16] A. Farah, P. Villani, C. Rose, S. Conil, L. Langrene, P. Laj, and K. Sellegri, Characterization of aerosol physical and optical properties at the Observatoire Perenne de l'Environnement (OPE) Site, Atmosphere (Basel) 11, 172 (2020),
https://doi.org/10.3390/atmos11020172
[17] M. Viana, S. Díez, and C. Reche, Indoor and outdoor sources and infiltration processes of PM1 and black carbon in an urban environment, Atmos. Environ. 45, 6359 (2011),
https://doi.org/10.1016/j.atmosenv.2011.08.044
[18] A. Helin, J.V. Niemi, A. Virkkula, L. Pirjola, K. Teinilä, J. Backman, M. Aurela, S. Saarikoski, T. Rönkkö, E. Asmi, and H. Timonen, Characteristics and source apportionment of black carbon in the Helsinki metropolitan area, Finland, Atmos. Environ. 190, 87 (2018),
https://doi.org/10.1016/j.atmosenv.2018.07.022
[19] E. Hristova, E. Georgieva, B. Veleva, N. Neykova, S. Naydenova, L. Gonsalvesh-Musakova, R. Neykova, and A. Petrov, Black carbon in Bulgaria - observed and modelled concentrations in two cities for two months, Atmosphere (Basel) 13, 213 (2022),
https://doi.org/10.3390/atmos13020213
[20] M. Piñeiro-Iglesias, J. Andrade-Garda, S. Suárez-Garaboa, S. Muniategui-Lorenzo, P. López-Mahía, and D. Prada-Rodríguez, Study of temporal variations of equivalent black carbon in a coastal city in northwest Spain using an atmospheric aerosol data management software, Appl. Sci. 11, 1 (2021),
https://doi.org/10.3390/app11020516
[21] S. Mbengue, N. Serfozo, J. Schwarz, N. Ziková, A.H. Šmejkalová, and I. Holoubek, Characterization of equivalent black carbon at a regional background site in Central Europe: Variability and source apportionment, Environ. Pollut. 260, 113771 (2020),
https://doi.org/10.1016/j.envpol.2019.113771
[22] E. Diapouli, A.C. Kalogridis, C. Markantonaki, S. Vratolis, P. Fetfatzis, C. Colombi, and K. Eleftheriadis, Annual variability of black carbon concentrations originating from biomass and fossil fuel combustion for the suburban aerosol in Athens, Greece, Atmosphere (Basel) 8, 234 (2017),
https://doi.org/10.3390/atmos8120234
[23] J. Deng, H. Guo, H. Zhang, J. Zhu, X. Wang, and P. Fu, Source apportionment of black carbon aerosols from light absorption observation and source-oriented modeling: an implication in a coastal city in China, Atmos. Chem. Phys. 20, 14419 (2020),
https://doi.org/10.5194/acp-20-14419-2020
[24] S. Byčenkienė, V. Ulevičius, and S. Kecorius, Characteristics of black carbon aerosol mass concentration over the East Baltic Region from two-year measurements, J. Environ. Monit. 13, 1027 (2011),
https://doi.org/10.1039/c0em00480d
[25] S. Byčenkienė, V. Dudoitis, and V. Ulevičius, The use of trajectory cluster analysis to evaluate the long-range transport of black carbon aerosol in the South-Eastern Baltic Region, Adv. Meteorol. 2014, 11 (2014),
https://doi.org/10.1155/2014/137694
[26] J. Pauraitė, G. Mordas, S. Byčenkienė, and V. Ulevičius, Spatial and temporal analysis of organic and black carbon mass concentrations in Lithuania, Atmosphere (Basel) 6, 1229 (2015),
https://doi.org/10.3390/atmos6081229
[27] V. Ulevičius, S. Byčenkienė, V. Remeikis, A. Garbaras, S. Kecorius, J. Andriejauskienė, D. Jasinevičienė, and G. Mocnik, Characterization of pollution events in the East Baltic region affected by regional biomass fire emissions, Atmos. Res. 98, 190 (2010),
https://doi.org/10.1016/j.atmosres.2010.03.021
[28] K. Kvietkus, J. Šakalys, J. Didžbalis, I. Garbarienė, N. Špirkauskaitė, and V. Remeikis, Atmospheric aerosol episodes over Lithuania after the May 2011 volcano eruption at Grimsvötn, Iceland, Atmos. Res. 122, 93 (2013),
https://doi.org/10.1016/j.atmosres.2012.10.014
[29] A. Minderytė, E.A. Ugboma, F.F. Mirza Montoro, I.S. Stachlewska, and S. Byčenkienė, Impact of long-range transport on black carbon source contribution and optical aerosol properties in two urban environments, Heliyon 9, 19652 (2023),
https://doi.org/10.1016/j.heliyon.2023.e19652
[30] S. Saarikoski, J.V. Niemi, M. Aurela, L. Pirjola, A. Kousa, T. Rönkkö, and H. Timonen, Sources of black carbon at residential and traffic environments obtained by two source apportionment methods, Atmos. Chem. Phys. 21, 14851–14869 (2021),
https://doi.org/10.5194/acp-21-14851-2021
[31] E. Ezani, S. Dhandapani, M.R. Heal, S.M. Praveena, M.F. Khan, and Z.T.A. Ramly, Characteristics and source apportionment of black carbon (BC) in a suburban area of Klang valley, Malaysia, Atmosphere (Basel) 12, 1 (2021),
https://doi.org/10.3390/atmos12060784
[32] J. Sandradewi, A.S.H. Prévôt, S. Szidat, N. Perron, M.R. Alfarra, V.A. Lanz, E. Weingartner, and U. Baltensperger, Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter, Environ. Sci. Technol. 42, 3316 (2008),
https://doi.org/10.1021/es702253m
[33] C. Mandin, M. Trantallidi, A. Cattaneo, N. Canha, V.G. Mihucz, T. Szigeti, R. Mabilia, E. Perreca, A. Spinazzè, S. Fossati, et al., Assessment of indoor air quality in office buildings across Europe – The OFFICAIR Study, Sci. Total Environ. 579, 169 (2017),
https://doi.org/10.1016/j.scitotenv.2016.10.238
[34] World Health Organization, Review of Evidence on Health Aspects of Air Pollution – REVIHAAP Project, Technical Report (World Health Organization Regional Office for Europe, 2013),
https://iris.who.int/handle/10665/341712
[35] A. Minderytė, J. Pauraitė, V. Dudoitis, K. Plauškaitė, A. Kilikevičius, J. Matijošius, A. Rimkus, K. Kilikevičienė, D. Vainorius, and S. Byčenkienė, Carbonaceous aerosol source apportionment and assessment of transport-related pollution, Atmos. Environ. 279, 119043 (2022),
https://doi.org/10.1016/j.atmosenv.2022.119043
[36] M. Becerril-Valle, E. Coz, A.S.H. Prévôt, G. Močnik, S.N. Pandis, A.M. Sánchez de la Campa, A. Alastuey, E. Díaz, R.M. Pérez, and B. Artíñano, Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain, Atmos. Environ. 169, 36 (2017),
https://doi.org/10.1016/j.atmosenv.2017.09.014
[37] X. Liu, H. Hadiatullah, P. Tai, Y. Xu, X. Zhang, J. Schnelle-Kreis, B. Schloter-Hai, and R. Zimmermann, Air pollution in Germany: Spatio-temporal variations and their driving factors based on continuous data from 2008 to 2018, Environ. Pollut. 276, 116732 (2021),
https://doi.org/10.1016/j.envpol.2021.116732
[38] M.S. Al Rashidi, Assessment of the atmospheric mixing layer height and its effects on pollutant dispersion, Environ Monit Assess. 190, 371 (2018),
https://doi.org/10.1007/s10661-018-6737-9