[PDF]    https://doi.org/10.3952/physics.2024.64.3.5

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 203–213 (2024)

CHARACTERIZATION OF SLA-PRINTED CERAMIC COMPOSITES FOR DENTAL RESTORATIONS
Karolis Stravinskasa, Alireza Shahidia, Oleksandr Kapustynskyib, Tadas Matijošiusa, Nikolaj Vishniakovb, and Genrik Mordasa
a Center for Physical Sciences and Technology, Savanorių Ave. 231, 02300 Vilnius, Lithuania
b Vilnius Gediminas Technical University, Saulėtekio 11, 10223 Vilnius, Lithuania
Email: karolis.stravinskas@ftmc.lt

Received 24 May 2024; revised 14 June 2024; accepted 17 June 2024

This study introduces a novel ceramic-composite resin specifically developed for stereolithography (SLA) 3D printing, aimed at enhancing dental restorations. The integration of advanced digital technologies in dentistry has shifted traditional methods towards more precise and efficient techniques such as computer-aided design/computer-aided manufacturing (CAD/CAM). However, these processes typically involve material waste due to their subtractive nature. Additive manufacturing, or 3D printing, particularly SLA, which uses ultraviolet light to cure photosensitive resins, presents a viable alternative with the potential for creating detailed, custom restorations with minimal waste. Our research focuses on formulating and evaluating a ceramic-composite resin that combines the benefits of light-cured materials with the mechanical robustness required for dental applications. We conducted comprehensive tests to assess the printability, mechanical properties and wear resistance of the developed material. The ceramic-composite resin demonstrated a tensile strength of approximately 73 MPa, significantly higher than the 42 MPa observed for traditional photopolymer resins. Additionally, the ceramic-composite resin showed ability to resist incidental friction and wear. This research could significantly impact the dental prosthetics field by providing a method for producing high-performance, patient-specific restorations efficiently and cost-effectively.
Keywords: dental restorations, additive manufacturing, stereolithography, ceramic composite, polymer

STEREOLITOGRAFIJA ATSPAUSDINTŲ KERAMINIŲ KOMPOZITŲ, SKIRTŲ DANTIMS RESTAURUOTI, CHARAKTERIZAVIMAS
Karolis Stravinskasa, Alireza Shahidia, Oleksandr Kapustynskyib, Tadas Matijošiusa, Nikolaj Vishniakovb, Genrik Mordasa

a Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Šiame tyrime pristatoma nauja keraminė kompozitinė derva, specialiai sukurta stereolitografijos (SLA) 3D spausdinimui, kuria siekiama patobulinti dantų restauravimą. Pažangių skaitmeninių technologijų integravimas odontologijoje pakeitė tradicinius metodus, pereinant prie tikslesnių ir efektyvesnių metodų, pavyzdžiui, kompiuterizuoto projektavimo ir kompiuterizuotos gamybos (CAD/CAM). Tačiau šie procesai dėl savo veikimo pobūdžio medžiagas yra linkę švaistyti. Pridėtinė gamyba, arba 3D spausdinimas, ypač SLA, yra perspektyvi alternatyva, galinti kurti tikslias, individualias ir lengvai pritaikomas dantų koregavimo ir atkūrimo priemones. Šiame straipsnyje pagrindinis dėmesys skiriamas keramikos kompozito dervos, pasižyminčios mechaniniu tvirtumu, reikalingu dantims restauruoti, spausdinimo galimybių įvertinimui. Atlikti išsamūs mechaninių savybių ir atsparumo dilimui bandymai parodė kompozitinės dervos 73 MPa stiprumo ribą, kuri yra gerokai didesnė nei tradicinės fotopolimerinės dervos (42 MPa). Taip pat nustatyta, jog keraminė kompozitinė derva pasižymi atsparumu atsitiktinei trinčiai ir dilimui. Šis tyrimas turi praktinės reikšmės dantų protezų gamybai, nes suteikia galimybę efektyviai ir pigiai gaminti aukštos kokybės, pacientui pritaikytus dantims restauruoti skirtus gaminius.


References / Nuorodos

[1] D. Khorsandi, A. Fahimipour, P. Abasian, S.S. Saber, M. Seyedi, S. Ghanavati, A. Ahmad, A.A. De Stephanis, and F. Taghavinezhaddilami, 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications, Acta Biomater. 122, 26–49 (2021),
https://doi.org/10.1016/j.actbio.2020.12.044
[2] J.W. Stansbury and M.J. Idacavage, 3D printing with polymers: Challenges among expanding options and opportunities, Dent. Mater. 32, 54–64 (2016),
 https://doi.org/10.1016/j.dental.2015.09.018
[3] K.J. Anusavice, C. Shen, and H.R. Rawls, Phillips’ Science of Dental Materials, Elsevier eBook on VitalSource, 12th ed. (Elsevier, St. Louis, MO, 2013),
https://evolve.elsevier.com/cs/product/9781455748136
[4] M. Gebler, A.J.M. Schoot Uiterkamp, and C. Visser, A global sustainability perspective on 3D printing technologies, Energ. Policy 74, 158–167 (2014),
https://doi.org/10.1016/j.enpol.2014.08.033
[5] M.S. Bilgin, A. Erdem, E. Dilber, and İ. Ersoy, Comparison of fracture resistance between cast, CAD/CAM milling, and direct metal laser sintering metal post systems, J. Prosthodont. Res. 60, 23–28 (2016),
https://doi.org/10.1016/j.jpor.2015.08.001
[6] D. Fan, Y. Li, X. Wang, T. Zhu, Q. Wang, H. Cai, W. Li, Y. Tian, and Z. Liu, Progressive 3D printing technology and its application in medical materials, Front. Pharmacol. 11, 122 (2020),
https://doi.org/10.3389/fphar.2020.00122
[7] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, and D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. B Eng. 143, 172–196 (2018),
https://doi.org/10.1016/j.compositesb.2018.02.012
[8] M. Dehurtevent, L. Robberecht, J.-C. Hornez, A. Thuault, E. Deveaux, and P. Béhin, Stereolithography: A new method for processing dental ceramics by additive computer-aided manufacturing, Dent. Mater. 33, 477–485 (2017),
https://doi.org/10.1016/j.dental.2017.01.018
[9] R. van Noort, The future of dental devices is digital, Dent. Mater. 28, 3–12 (2012),
https://doi.org/10.1016/j.dental.2011.10.014
[10] K.J. Chun and J.Y. Lee, Comparative study of mechanical properties of dental restorative materials and dental hard tissues in compressive loads, J. Dent. Biomech. 5, 1758736014555246 (2014),
https://doi.org/10.1177/1758736014555246
[11] L.M. Schönhoff, F. Mayinger, M. Eichberger, E. Reznikova, and B. Stawarczyk, 3D printing of dental restorations: Mechanical properties of thermoplastic polymer materials, J. Mech. Behav. Biomed. Mater. 119, 104544 (2021),
https://doi.org/10.1016/j.jmbbm.2021.104544
[12] C.V. Tigmeanu, L.C. Ardelean, L.-C. Rusu, and M.-L. Negrutiu, Additive manufactured polymers in dentistry, current state-of-the-art and future perspectives-A review, Polymers 14, 3658 (2022),
https://doi.org/10.3390/polym14173658
[13] M.B. Blatz, A. Sadan, and M. Kern, Resin-ceramic bonding: A review of the literature, J. Prosthet. Dent. 89, 268–274 (2003),
https://doi.org/10.1067/mpr.2003.50
[14] J. Sun, S. Yu, J. Wade-Zhu, Y. Wang, H. Qu, S. Zhao, R. Zhang, J. Yang, J. Binner, and J. Bai, 3D printing of ceramic composite with biomimetic toughening design, Addit. Manuf. 58, 103027 (2022),
https://doi.org/10.1016/j.addma.2022.103027
[15] O. Al‐Ketan, R.K. Al‐Rub, and R. Rowshan, Mechanical properties of a new type of architected interpenetrating phase composite materials, Adv. Mater. Technol. 2, 1600235 (2016),
https://doi.org/10.1002/admt.201600235
[16] S.H. Ji, D.S. Kim, M.S. Park, D. Lee, and J.S. Yun, Development of multicolor 3D-printed 3Y-ZrO2 sintered bodies by optimizing rheological properties of UV-curable high-content ceramic nanocomposites, Mater. Des. 209, 109981 (2021),
https://doi.org/10.1016/j.matdes.2021.109981
[17] D. Mondal, Z. Haghpanah, C.J. Huxman, S. Tanter, D. Sun, M. Gorbet, and T.L. Willett, mSLA-based 3D printing of acrylated epoxidized soybean oil – nano-hydroxyapatite composites for bone repair, Mater. Sci. Eng. C 130, 112456 (2021),
https://doi.org/10.1016/j.msec.2021.112456
[18] Liqcreate Composite-X (2024),
https://www.liqcreate.com/product/composite-x/
[19] Phrozen Aqua 8K 3D Printing Resin, Phrozen Technology (2024),
https://phrozen3d.com/products/aqua-8k-resin
[20] ISO 15733:2015 – Mechanical properties of ceramic composites at ambient temperature in air atmospheric pressure – Determination of tensile properties,
https://www.iso.org/standard/62149.html
[21] ISO 15490:2008 – Test method for tensile strength of monolithic ceramics at room temperature,
https://www.iso.org/standard/43927.html
[22] K.K. Meena, V. Sharma, R.K. Jaiswal, R. Madaan, M. Gupta, and S. Jaswal, An in vitro study comparing the diametral tensile strength of composite core build-up material with three different prefabricated post systems, Cureus 14(9), e29560 (2022),
https://doi.org/10.7759/cureus.29560
[23] J. Kim, Tensile fracture behavior and characterization of ceramic matrix composites, Materials 12, 2997 (2019),
https://doi.org/10.3390/ma12182997
[24] T. Matijošius, A. Pivoriūnas, A. Čebatariūnienė, V. Tunaitis, L. Staišiūnas, G. Stalnionis, G. Stalnionis, A. Ručinskienė, and S.J. Asadauskas, Friction reduction using nanothin titanium layers on anodized aluminum as potential bioceramic material, Ceram. Int. 46, 15581–15593 (2020),
https://doi.org/10.1016/j.ceramint.2020.03.105
[25] J.G. Buijnsters, R. Zhong, N. Tsyntsaru, and J.-P. Celis, Surface wettability of macroporous anodized aluminum oxide, ACS Appl. Mater. Interfaces 5, 3224–3233 (2013),
https://doi.org/10.1021/am4001425
[26] J. Hu, J.H. Tian, J. Shi, F. Zhang, D.L. He, L. Liu, D.J. Jung, J.B. Bai, and Y. Chen, Cell culture on AAO nanoporous substrates with and without geometry constrains, Microelectron. Eng. 88, 1714–1717 (2011),
https://doi.org/10.1016/j.mee.2010.12.055
[27] T. Matijošius, G. Stalnionis, G. Bikulčius, S. Jankauskas, L. Staišiūnas, and S.J. Asadauskas, Antifrictional effects of group IVB elements deposited as nanolayers on anodic coatings, Coatings 13, 132 (2023),
https://doi.org/10.3390/coatings13010132