Received 24 May 2024; revised 14 June 2024; accepted 17 June 2024
References /
Nuorodos
[1] D. Khorsandi, A. Fahimipour, P. Abasian, S.S. Saber, M.
Seyedi, S. Ghanavati, A. Ahmad, A.A. De Stephanis, and F.
Taghavinezhaddilami, 3D and 4D printing in dentistry and
maxillofacial surgery: Printing techniques, materials, and
applications, Acta Biomater.
122, 26–49 (2021),
https://doi.org/10.1016/j.actbio.2020.12.044
[2] J.W. Stansbury and M.J. Idacavage, 3D printing with
polymers: Challenges among expanding options and opportunities,
Dent. Mater.
32, 54–64 (2016),
https://doi.org/10.1016/j.dental.2015.09.018
[3] K.J. Anusavice, C. Shen, and H.R. Rawls,
Phillips’
Science of Dental Materials, Elsevier eBook on
VitalSource, 12th ed. (Elsevier, St. Louis, MO, 2013),
https://evolve.elsevier.com/cs/product/9781455748136
[4] M. Gebler, A.J.M. Schoot Uiterkamp, and C. Visser, A global
sustainability perspective on 3D printing technologies, Energ.
Policy
74, 158–167 (2014),
https://doi.org/10.1016/j.enpol.2014.08.033
[5] M.S. Bilgin, A. Erdem, E. Dilber, and İ. Ersoy, Comparison
of fracture resistance between cast, CAD/CAM milling, and direct
metal laser sintering metal post systems, J. Prosthodont. Res.
60,
23–28 (2016),
https://doi.org/10.1016/j.jpor.2015.08.001
[6] D. Fan, Y. Li, X. Wang, T. Zhu, Q. Wang, H. Cai, W. Li, Y.
Tian, and Z. Liu, Progressive 3D printing technology and its
application in medical materials, Front. Pharmacol.
11,
122 (2020),
https://doi.org/10.3389/fphar.2020.00122
[7] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, and D.
Hui, Additive manufacturing (3D printing): A review of
materials, methods, applications and challenges, Compos. B Eng.
143, 172–196 (2018),
https://doi.org/10.1016/j.compositesb.2018.02.012
[8] M. Dehurtevent, L. Robberecht, J.-C. Hornez, A. Thuault, E.
Deveaux, and P. Béhin, Stereolithography: A new method for
processing dental ceramics by additive computer-aided
manufacturing, Dent. Mater.
33, 477–485 (2017),
https://doi.org/10.1016/j.dental.2017.01.018
[9] R. van Noort, The future of dental devices is digital, Dent.
Mater.
28, 3–12 (2012),
https://doi.org/10.1016/j.dental.2011.10.014
[10] K.J. Chun and J.Y. Lee, Comparative study of mechanical
properties of dental restorative materials and dental hard
tissues in compressive loads, J. Dent. Biomech.
5,
1758736014555246 (2014),
https://doi.org/10.1177/1758736014555246
[11] L.M. Schönhoff, F. Mayinger, M. Eichberger, E. Reznikova,
and B. Stawarczyk, 3D printing of dental restorations:
Mechanical properties of thermoplastic polymer materials, J.
Mech. Behav. Biomed. Mater.
119, 104544 (2021),
https://doi.org/10.1016/j.jmbbm.2021.104544
[12] C.V. Tigmeanu, L.C. Ardelean, L.-C. Rusu, and M.-L.
Negrutiu, Additive manufactured polymers in dentistry, current
state-of-the-art and future perspectives-A review, Polymers
14,
3658 (2022),
https://doi.org/10.3390/polym14173658
[13] M.B. Blatz, A. Sadan, and M. Kern, Resin-ceramic bonding: A
review of the literature, J. Prosthet. Dent.
89, 268–274
(2003),
https://doi.org/10.1067/mpr.2003.50
[14] J. Sun, S. Yu, J. Wade-Zhu, Y. Wang, H. Qu, S. Zhao, R.
Zhang, J. Yang, J. Binner, and J. Bai, 3D printing of ceramic
composite with biomimetic toughening design, Addit. Manuf.
58,
103027 (2022),
https://doi.org/10.1016/j.addma.2022.103027
[15] O. Al‐Ketan, R.K. Al‐Rub, and R. Rowshan, Mechanical
properties of a new type of architected interpenetrating phase
composite materials, Adv. Mater. Technol.
2, 1600235
(2016),
https://doi.org/10.1002/admt.201600235
[16] S.H. Ji, D.S. Kim, M.S. Park, D. Lee, and J.S. Yun,
Development of multicolor 3D-printed 3Y-ZrO2 sintered bodies by
optimizing rheological properties of UV-curable high-content
ceramic nanocomposites, Mater. Des.
209, 109981 (2021),
https://doi.org/10.1016/j.matdes.2021.109981
[17] D. Mondal, Z. Haghpanah, C.J. Huxman, S. Tanter, D. Sun, M.
Gorbet, and T.L. Willett, mSLA-based 3D printing of acrylated
epoxidized soybean oil – nano-hydroxyapatite composites for bone
repair, Mater. Sci. Eng. C
130, 112456 (2021),
https://doi.org/10.1016/j.msec.2021.112456
[18] Liqcreate Composite-X (2024),
https://www.liqcreate.com/product/composite-x/
[19] Phrozen Aqua 8K 3D Printing Resin, Phrozen Technology
(2024),
https://phrozen3d.com/products/aqua-8k-resin
[20] ISO 15733:2015 – Mechanical properties of ceramic
composites at ambient temperature in air atmospheric pressure –
Determination of tensile properties,
https://www.iso.org/standard/62149.html
[21] ISO 15490:2008 – Test method for tensile strength of
monolithic ceramics at room temperature,
https://www.iso.org/standard/43927.html
[22] K.K. Meena, V. Sharma, R.K. Jaiswal, R. Madaan, M. Gupta,
and S. Jaswal, An in vitro study comparing the diametral tensile
strength of composite core build-up material with three
different prefabricated post systems, Cureus
14(9),
e29560 (2022),
https://doi.org/10.7759/cureus.29560
[23] J. Kim, Tensile fracture behavior and characterization of
ceramic matrix composites, Materials
12, 2997 (2019),
https://doi.org/10.3390/ma12182997
[24] T. Matijošius, A. Pivoriūnas, A. Čebatariūnienė, V.
Tunaitis, L. Staišiūnas, G. Stalnionis, G. Stalnionis, A.
Ručinskienė, and S.J. Asadauskas, Friction reduction using
nanothin titanium layers on anodized aluminum as potential
bioceramic material, Ceram. Int.
46, 15581–15593 (2020),
https://doi.org/10.1016/j.ceramint.2020.03.105
[25] J.G. Buijnsters, R. Zhong, N. Tsyntsaru, and J.-P. Celis,
Surface wettability of macroporous anodized aluminum oxide, ACS
Appl. Mater. Interfaces
5, 3224–3233 (2013),
https://doi.org/10.1021/am4001425
[26] J. Hu, J.H. Tian, J. Shi, F. Zhang, D.L. He, L. Liu, D.J.
Jung, J.B. Bai, and Y. Chen, Cell culture on AAO nanoporous
substrates with and without geometry constrains, Microelectron.
Eng.
88, 1714–1717 (2011),
https://doi.org/10.1016/j.mee.2010.12.055
[27] T. Matijošius, G. Stalnionis, G. Bikulčius, S. Jankauskas,
L. Staišiūnas, and S.J. Asadauskas, Antifrictional effects of
group IVB elements deposited as nanolayers on anodic coatings,
Coatings
13, 132 (2023),
https://doi.org/10.3390/coatings13010132