[PDF]    https://doi.org/10.3952/physics.2024.64.4.3

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 229–237 (2024)

EMISSION INDUCED BY STRONG COUPLING BETWEEN HYBRID TAMM–SURFACE PLASMON POLARITON MODE AND RHODAMINE 6G DYE EXCITON
Ernesta Bužavaitė-Vertelienėa,b, Vytautas Žičkusa, Justina Anulytėa, and Zigmas Balevičiusa,b
a Department of Laser Technologies, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
b Faculty of Electronics, Vilnius Gediminas Technical University, Plytinės 25, 10105 Vilnius, Lithuania
Email: zigmas.balevicius@ftmc.lt

Received 19 November 2024; accepted 20 November 2024

Total internal reflection ellipsometry (TIRE) and leakage microscopy were applied for the study of photonic-plasmonic nanostructures supporting hybrid Tamm–surface plasmon modes and their strong coupling with Rhodamine 6G organic dye excitons. The optical response of TIRE has shown that Tamm and surface plasmon polaritons interact strongly and the formed hybrid plasmonic mode alters resonances in the energy spectra. Moreover, both TPP (Tamm plasmon polaritons) and SPP (surface plasmon polaritons) components in the hybrid mode are strongly coupled with R6G-PMMA (poly(methyl methacrylate)) layers at the inner and outer interfaces of the 50 nm gold layer, respectively. Leakage microscopy in the back focal plane optical configuration proves the energy transfer of excited emitters through the 50 nm gold layer in the strong coupling regime. Polaritonic emission in the strong coupling has better coherence properties than conventional spontaneous fluorescence emission from pure Rhodamine 6G organic dye molecules.
Keywords: strong coupling, polaritonic emission, plasmonics

STIPRIOSIOS SĄVEIKOS REŽIMO NULEMTA SPINDULIUOTĖ TARP HIBRIDINIŲ TAMMOPAVIRŠINIŲ PLAZMONŲ POLIARITONŲ IR RODAMINO 6G MOLEKULIŲ EKSITONO
Ernesta Bužavaitė-Vertelienėa,b, Vytautas Žičkusa, Justina Anulytėa, Zigmas Balevičiusa,b

a Fizinių ir technologijos mokslų centro Lazerinių technologijų skyrius, Vilnius, Lietuva
b Vilniaus Gedimino technikos universiteto Elektronikos fakultetas, Vilnius, Lietuva

Fotoninių-plazmoninių nanostruktūrų, palaikančių hibridinius Tammo–paviršinius plazmoninius sužadinimus ir jų stipriąją sąveiką su rodamino 6G organinių dažų eksitonais, tyrimui taikyta visiško vidaus atspindžio elipsometrija (TIRE) ir optinė mikroskopija visiško vidaus atspindžio konfigūracijoje. Optinis TIRE atsakas parodė, kad Tammo ir paviršiaus plazmono poliaritonai stipriai sąveikauja, o hibridinis plazmoninis sužadinimas lėmė rezonansų pokytį energijos spektre. Be to, tiek TPP, tiek SPP sandai hibridinėje būsenoje yra stipriosios sąveikos režime su R6G-PMMA sluoksniais, atitinkamai esančiais 50 nm aukso sluoksnio vidinėje ir išorinėje sąsajose. Visiško vidaus atspindžio mikroskopija galinio fokuso plokštumos optinėje konfigūracijoje įrodo sužadintų emiterių energijos perdavimą per 50 nm aukso sluoksnį, kai sistema yra stipriosios sąveikos režime. Poliaritoninis spinduliavimas stipriosios sąveikos režime pasižymi geresnėmis koherentiškumo savybėmis, palyginti su įprastiniu grynų rodamino 6G organinių dažų molekulių spontaniniu fluorescencijos spinduliavimu.


References / Nuorodos

[1] P. Andrew, Energy transfer across a metal film mediated by surface plasmon polaritons, Science 306(5698), 1002–1005 (2004),
https://doi.org/10.1126/science.1102992
[2] J. Bellessa, C. Bonnand, J.C. Plenet, and J. Mugnier, Strong coupling between surface plasmons and excitons in an organic semiconductor, Phys. Rev. Lett. 93(3), 036404 (2004),
https://doi.org/10.1103/PhysRevLett.93.036404
[3] C. Symonds, C. Bonnand, J.C. Plenet, A. Bréhier, R. Parashkov, J.S. Lauret, E. Deleporte, and J. Bellessa, Particularities of surface plasmon–exciton strong coupling with large Rabi splitting, New J. Phys. 10(6), 065017 (2008),
https://doi.org/10.1088/1367-2630/10/6/065017
[4] J.T. Hugall, A. Singh, and N.F. van Hulst, Plasmonic cavity coupling, ACS Photonics 5(1), 43–53 (2018),
https://doi.org/10.1021/acsphotonics.7b01139
[5] W.L. Barnes, Surface plasmon–polariton length scales: a route to sub-wavelength optics, J. Opt. A 8(4), S87–S93 (2006),
https://doi.org/10.1088/1464-4258/8/4/S06
[6] T.K. Hakala, A. Moilanen, A. Väkeväinen, R. Guo, J. Martikainen, K.S. Daskalakis, H. Rekola, A. Julku, and P. Törmä, Bose–Einstein condensation in a plasmonic lattice, Nat. Phys. 14(7), 739–744 (2018),
https://doi.org/10.1038/s41567-018-0109-9
[7] P. Berini and I. De Leon, Surface plasmon–polariton amplifiers and lasers, Nat. Photon. 6(1), 16–24 (2012),
https://doi.org/10.1038/nphoton.2011.285
[8] A. Lishchuk, C. Vasilev, M.P. Johnson, C.N. Hunter, P. Törmä, and G.J. Leggett, Turning the challenge of quantum biology on its head: biological control of quantum optical systems, Faraday Discuss. 216, 57–71 (2019),
https://doi.org/10.1039/C8FD00241J
[9] A. Paulauskas, S. Tumenas, A. Selskis, T. Tolenis, A. Valavicius, and Z. Balevicius, Hybrid Tamm-surface plasmon polaritons mode for detection of mercury adsorption on 1D photonic crystal/gold nanostructures by total internal reflection ellipsometry, Opt. Express 26(23), 30400 (2018),
https://doi.org/10.1364/OE.26.030400
[10] J.A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T.W. Ebbesen, Modifying chemical landscapes by coupling to vacuum fields, Angew. Chem. Int. Ed. 51(7), 1592–1596 (2012),
https://doi.org/10.1002/anie.201107033
[11] C.P. Dietrich, A. Steude, M. Schubert, J. Ohmer, U. Fischer, S. Höfling, and M.C. Gather, Strong coupling in fully tunable microcavities filled with biologically produced fluorescent proteins, Adv. Opt. Mater. 5(1), 1600659 (2017),
https://doi.org/10.1002/adom.201600659
[12] J. Anulytė, V. Žičkus, E. Bužavaitė-Vertelienė, D. Faccio, and Z. Balevičius, Strongly coupled plasmon-exciton polaritons for photobleaching suppression, Nanophotonics 13(22), 4091–4099 (2024),
https://doi.org/10.1515/nanoph-2024-0259
[13] D.G. Baranov, M. Wersäll, J. Cuadra, T.J. Antosiewicz, and T. Shegai, Novel nanostructures and materials for strong light–matter interactions, ACS Photonics 5(1), 24–42 (2018),
https://doi.org/10.1021/acsphotonics.7b00674
[14] Z. Jacob and V.M. Shalaev, Plasmonics goes quantum, Science 334(6055), 463–464 (2011),
https://doi.org/10.1126/science.1211736
[15] M. Pelton, S.D. Storm, and H. Leng, Strong coupling of emitters to single plasmonic nanoparticles: exciton-induced transparency and Rabi splitting, Nanoscale 11(31), 14540–14552 (2019),
https://doi.org/10.1039/C9NR05044B
[16] B.I. Afinogenov, V.O. Bessonov, A.A. Nikulin, and A.A. Fedyanin, Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals, Appl. Phys. Lett. 103(6), 061112 (2013),
https://doi.org/10.1063/1.4817999
[17] M. Kaliteevski, I. Iorsh, S. Brand, R.A. Abram, J.M. Chamberlain, A.V. Kavokin, and I.A. Shelykh, Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror, Phys. Rev. B 76(16), 165415 (2007),
https://doi.org/10.1103/PhysRevB.76.165415
[18] I. Tamm, Über eine mögliche Art der Elektronenbindung an Kristalloberflächen, Z. Physik 76, 849–850 (1932),
https://doi.org/10.1007/BF01341581
[19] A. Reza, Z. Balevicius, R. Vaisnoras, G.J. Babonas, and A. Ramanavicius, Studies of optical anisotropy in opals by normal incidence ellipsometry, Thin Solid Films 519(9), 2641–2644 (2011),
https://doi.org/10.1016/j.tsf.2010.12.042
[20] M.E. Sasin, R.P. Seisyan, M.A. Kalitteevski, S. Brand, R.A. Abram, J.M. Chamberlain, A.Yu. Egorov, A.P. Vasil’ev, V.S. Mikhrin, and A.V. Kavokin, Tamm plasmon polaritons: Slow and spatially compact light, Appl. Phys. Lett. 92(25), 251112 (2008),
 https://doi.org/10.1063/1.2952486
[21] E. Bužavaitė-Vertelienė, V. Vertelis, and Z. Balevičius, The experimental evidence of a strong coupling regime in the hybrid Tamm plasmon-surface plasmon polariton mode, Nanophotonics 10(5), 1565–1571 (2021),
https://doi.org/10.1515/nanoph-2020-0660
[22] P. Törmä and W.L. Barnes, Strong coupling between surface plasmon polaritons and emitters: a review, Rep. Prog. Phys. 78(1), 013901 (2015),
https://doi.org/10.1088/0034-4885/78/1/013901
[23] T.K. Hakala, J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules, Phys. Rev. Lett. 103(5), 053602 (2009),
https://doi.org/10.1103/PhysRevLett.103.053602
[24] P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates, Nat. Photon. 7(2), 128–132 (2013),
https://doi.org/10.1038/nphoton.2012.340
[25] R. Ulbricht, E. Hendry, J. Shan, T.F. Heinz, and M. Bonn, Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy, Rev. Mod. Phys. 83(2), 543–586 (2011),
https://doi.org/10.1103/RevModPhys.83.543
[26] D.L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21(5), 836–850 (1953),
https://doi.org/10.1063/1.1699044
[27] T. Förster, 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation, Discuss. Faraday Soc. 27, 7–17 (1959),
https://doi.org/10.1039/DF9592700007
[28] T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys. 437, 55–75 (1948),
https://doi.org/10.1002/andp.19484370105
[29] J. Anulytė, E. Bužavaitė-Vertelienė, V. Vertelis, E. Stankevičius, K. Vilkevičius, and Z. Balevičius, Influence of a gold nano-bumps surface lattice array on the propagation length of strongly coupled Tamm and surface plasmon polaritons, J. Mater. Chem. C 10(36), 13234–13241 (2022),
https://doi.org/10.1039/D2TC02174A
[30] H. Arwin, M. Poksinski, and K. Johansen, Total internal reflection ellipsometry: principles and applications, Appl. Opt. 43(15), 3028 (2004),
https://doi.org/10.1364/AO.43.003028
[31] Z. Balevicius, V. Vaicikauskas, and G.-J. Babonas, The role of surface roughness in total internal reflection ellipsometry of hybrid systems, Appl. Surf. Sci. 256(3), 640–644 (2009),
https://doi.org/10.1016/j.apsusc.2009.08.033
[32] V.A. Kuznetsov, N.I. Kunavin, and V.N. Shamraev, Spectra and quantum yield of phosphorescence of rhodamine 6G solutions at 77°K, J. Appl. Spectrosc. 20(5), 604–607 (1974),
https://doi.org/10.1007/BF00607454
[33] L.V. Levshin, M.G. Reva, and B.D. Ryzhikov, Structural dependence of the spectral characteristics of aggregates of complex organic molecules, J. Appl. Spectrosc. 34(4), 426–431 (1981),
https://doi.org/10.1007/BF00614225