References /
Nuorodos
[1] P. Andrew, Energy transfer across a metal film mediated by
surface plasmon polaritons, Science
306(5698), 1002–1005
(2004),
https://doi.org/10.1126/science.1102992
[2] J. Bellessa, C. Bonnand, J.C. Plenet, and J. Mugnier, Strong
coupling between surface plasmons and excitons in an organic
semiconductor, Phys. Rev. Lett.
93(3), 036404 (2004),
https://doi.org/10.1103/PhysRevLett.93.036404
[3] C. Symonds, C. Bonnand, J.C. Plenet, A. Bréhier, R.
Parashkov, J.S. Lauret, E. Deleporte, and J. Bellessa,
Particularities of surface plasmon–exciton strong coupling with
large Rabi splitting, New J. Phys.
10(6), 065017 (2008),
https://doi.org/10.1088/1367-2630/10/6/065017
[4] J.T. Hugall, A. Singh, and N.F. van Hulst, Plasmonic cavity
coupling, ACS Photonics
5(1), 43–53 (2018),
https://doi.org/10.1021/acsphotonics.7b01139
[5] W.L. Barnes, Surface plasmon–polariton length scales: a
route to sub-wavelength optics, J. Opt. A
8(4), S87–S93
(2006),
https://doi.org/10.1088/1464-4258/8/4/S06
[6] T.K. Hakala, A. Moilanen, A. Väkeväinen, R. Guo, J.
Martikainen, K.S. Daskalakis, H. Rekola, A. Julku, and P. Törmä,
Bose–Einstein condensation in a plasmonic lattice, Nat. Phys.
14(7),
739–744 (2018),
https://doi.org/10.1038/s41567-018-0109-9
[7] P. Berini and I. De Leon, Surface plasmon–polariton
amplifiers and lasers, Nat. Photon.
6(1), 16–24 (2012),
https://doi.org/10.1038/nphoton.2011.285
[8] A. Lishchuk, C. Vasilev, M.P. Johnson, C.N. Hunter, P.
Törmä, and G.J. Leggett, Turning the challenge of quantum
biology on its head: biological control of quantum optical
systems, Faraday Discuss.
216, 57–71 (2019),
https://doi.org/10.1039/C8FD00241J
[9] A. Paulauskas, S. Tumenas, A. Selskis, T. Tolenis, A.
Valavicius, and Z. Balevicius, Hybrid Tamm-surface plasmon
polaritons mode for detection of mercury adsorption on 1D
photonic crystal/gold nanostructures by total internal
reflection ellipsometry, Opt. Express
26(23), 30400
(2018),
https://doi.org/10.1364/OE.26.030400
[10] J.A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T.W.
Ebbesen, Modifying chemical landscapes by coupling to vacuum
fields, Angew. Chem. Int. Ed.
51(7), 1592–1596 (2012),
https://doi.org/10.1002/anie.201107033
[11] C.P. Dietrich, A. Steude, M. Schubert, J. Ohmer, U.
Fischer, S. Höfling, and M.C. Gather, Strong coupling in fully
tunable microcavities filled with biologically produced
fluorescent proteins, Adv. Opt. Mater.
5(1), 1600659
(2017),
https://doi.org/10.1002/adom.201600659
[12] J. Anulytė, V. Žičkus, E. Bužavaitė-Vertelienė, D. Faccio,
and Z. Balevičius, Strongly coupled plasmon-exciton polaritons
for photobleaching suppression, Nanophotonics
13(22),
4091–4099 (2024),
https://doi.org/10.1515/nanoph-2024-0259
[13] D.G. Baranov, M. Wersäll, J. Cuadra, T.J. Antosiewicz, and
T. Shegai, Novel nanostructures and materials for strong
light–matter interactions, ACS Photonics
5(1), 24–42
(2018),
https://doi.org/10.1021/acsphotonics.7b00674
[14] Z. Jacob and V.M. Shalaev, Plasmonics goes quantum, Science
334(6055), 463–464 (2011),
https://doi.org/10.1126/science.1211736
[15] M. Pelton, S.D. Storm, and H. Leng, Strong coupling of
emitters to single plasmonic nanoparticles: exciton-induced
transparency and Rabi splitting, Nanoscale
11(31),
14540–14552 (2019),
https://doi.org/10.1039/C9NR05044B
[16] B.I. Afinogenov, V.O. Bessonov, A.A. Nikulin, and A.A.
Fedyanin, Observation of hybrid state of Tamm and surface
plasmon-polaritons in one-dimensional photonic crystals, Appl.
Phys. Lett.
103(6), 061112 (2013),
https://doi.org/10.1063/1.4817999
[17] M. Kaliteevski, I. Iorsh, S. Brand, R.A. Abram, J.M.
Chamberlain, A.V. Kavokin, and I.A. Shelykh, Tamm
plasmon-polaritons: Possible electromagnetic states at the
interface of a metal and a dielectric Bragg mirror, Phys. Rev. B
76(16), 165415 (2007),
https://doi.org/10.1103/PhysRevB.76.165415
[18] I. Tamm, Über eine mögliche Art der Elektronenbindung an
Kristalloberflächen, Z. Physik
76, 849–850 (1932),
https://doi.org/10.1007/BF01341581
[19] A. Reza, Z. Balevicius, R. Vaisnoras, G.J. Babonas, and A.
Ramanavicius, Studies of optical anisotropy in opals by normal
incidence ellipsometry, Thin Solid Films
519(9),
2641–2644 (2011),
https://doi.org/10.1016/j.tsf.2010.12.042
[20] M.E. Sasin, R.P. Seisyan, M.A. Kalitteevski, S. Brand, R.A.
Abram, J.M. Chamberlain, A.Yu. Egorov, A.P. Vasil’ev, V.S.
Mikhrin, and A.V. Kavokin, Tamm plasmon polaritons: Slow and
spatially compact light, Appl. Phys. Lett.
92(25),
251112 (2008),
https://doi.org/10.1063/1.2952486
[21] E. Bužavaitė-Vertelienė, V. Vertelis, and Z. Balevičius,
The experimental evidence of a strong coupling regime in the
hybrid Tamm plasmon-surface plasmon polariton mode,
Nanophotonics
10(5), 1565–1571 (2021),
https://doi.org/10.1515/nanoph-2020-0660
[22] P. Törmä and W.L. Barnes, Strong coupling between surface
plasmon polaritons and emitters: a review, Rep. Prog. Phys.
78(1),
013901 (2015),
https://doi.org/10.1088/0034-4885/78/1/013901
[23] T.K. Hakala, J. Toppari, A. Kuzyk, M. Pettersson, H.
Tikkanen, H. Kunttu, and P. Törmä, Vacuum Rabi splitting and
strong-coupling dynamics for surface-plasmon polaritons and
rhodamine 6G molecules, Phys. Rev. Lett.
103(5), 053602
(2009),
https://doi.org/10.1103/PhysRevLett.103.053602
[24] P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C.
Manzoni, G. Cerullo, and C. Lienau, Real-time observation of
ultrafast Rabi oscillations between excitons and plasmons in
metal nanostructures with J-aggregates, Nat. Photon.
7(2),
128–132 (2013),
https://doi.org/10.1038/nphoton.2012.340
[25] R. Ulbricht, E. Hendry, J. Shan, T.F. Heinz, and M. Bonn,
Carrier dynamics in semiconductors studied with time-resolved
terahertz spectroscopy, Rev. Mod. Phys.
83(2), 543–586
(2011),
https://doi.org/10.1103/RevModPhys.83.543
[26] D.L. Dexter, A theory of sensitized luminescence in solids,
J. Chem. Phys.
21(5), 836–850 (1953),
https://doi.org/10.1063/1.1699044
[27] T. Förster, 10th Spiers Memorial Lecture. Transfer
mechanisms of electronic excitation, Discuss. Faraday Soc.
27,
7–17 (1959),
https://doi.org/10.1039/DF9592700007
[28] T. Förster, Zwischenmolekulare Energiewanderung und
Fluoreszenz, Ann. Phys.
437, 55–75 (1948),
https://doi.org/10.1002/andp.19484370105
[29] J. Anulytė, E. Bužavaitė-Vertelienė, V. Vertelis, E.
Stankevičius, K. Vilkevičius, and Z. Balevičius, Influence of a
gold nano-bumps surface lattice array on the propagation length
of strongly coupled Tamm and surface plasmon polaritons, J.
Mater. Chem. C
10(36), 13234–13241 (2022),
https://doi.org/10.1039/D2TC02174A
[30] H. Arwin, M. Poksinski, and K. Johansen, Total internal
reflection ellipsometry: principles and applications, Appl. Opt.
43(15), 3028 (2004),
https://doi.org/10.1364/AO.43.003028
[31] Z. Balevicius, V. Vaicikauskas, and G.-J. Babonas, The role
of surface roughness in total internal reflection ellipsometry
of hybrid systems, Appl. Surf. Sci.
256(3), 640–644
(2009),
https://doi.org/10.1016/j.apsusc.2009.08.033
[32] V.A. Kuznetsov, N.I. Kunavin, and V.N. Shamraev, Spectra
and quantum yield of phosphorescence of rhodamine 6G solutions
at 77°K, J. Appl. Spectrosc.
20(5), 604–607 (1974),
https://doi.org/10.1007/BF00607454
[33] L.V. Levshin, M.G. Reva, and B.D. Ryzhikov, Structural
dependence of the spectral characteristics of aggregates of
complex organic molecules, J. Appl. Spectrosc.
34(4),
426–431 (1981),
https://doi.org/10.1007/BF00614225