References /
Nuorodos
[1] S. Hu, D. Young, S. Corzine, A. Gossard, and L. Coldren,
High-efficiency and low-threshold InGaAs/AlGaAs quantum-well
lasers, J. Appl. Phys.
76, 3932–3934 (1994),
https://doi.org/10.1063/1.357408
[2] F. Beffa, H. Jäckel, M. Achtenhagen, C. Harder, and D. Erni,
High-temperature optical gain of 980 nm InGaAs/AlGaAs
quantum-well lasers, Appl. Phys. Lett.
77, 2301–2303
(2000),
https://doi.org/10.1063/1.1317541
[3] L. Han, M. Zhao, X. Tang, W. Huo, Z. Deng, Y. Jiang, W.
Wang, H. Chen, C. Du, and H. Jia, Luminescence study in
InGaAs/AlGaAs multi-quantum-well light emitting diode with p-n
junction engineering, J. Appl. Phys.
127, 085706 (2020),
https://doi.org/10.1063/1.5136300
[4] H. Yang, Y. Zheng, Z. Tang, N. Li, X. Zhou, P. Chen, and J.
Wang, MBE growth of high performance very long wavelength
InGaAs/GaAs quantum well infrared photodetectors, J. Phys. D
53,
135110 (2020)
https://doi.org/10.1088/1361-6463/ab66d7
[5] B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert,
J. Hader, S.W. Koch, J.V. Moloney, M. Koch, and W. Stolz, 106 W
continuous wave output power from vertical-external-cavity
surface-emitting laser, Electron. Lett.
48(9), 516–517
(2012),
https://doi.org/10.1049/el.2012.0531
[6] D. Das, H. Ghadi, B. Tongbram, S. Singh, and S. Chakrabarti,
The impact of confinement enhancement AlGaAs barrier on the
optical and structural properties of InAs/InGaAs/GaAs
submonolayer quantum dot heterostructures, J. Lumin.
192,
277–282 (2017),
https://doi.org/10.1016/j.jlumin.2017.06.054
[7] H. Dong, J. Sun, S. Ma, J. Liang, T. Lu, Z. Jia, X. Liu, and
B. Xu, Effect of potential barrier height on the carrier
transport in InGaAs/GaAsP multi-quantum wells and photoelectric
properties of laser diode, Phys. Chem. Chem. Phys.
18,
6901–6912 (2016),
https://doi.org/10.1039/C5CP07805A
[8] Y.-F. Wang, M.I. Niass, F. Wang, and Y.-H. Liu, Improvement
of radiative recombination rate in deep ultraviolet laser diodes
with steplike quantum barrier and alluminum content-graded
electron blocking layers, Chinese Phys. B
29, 017301
(2020),
https://doi.org/10.1088/1674-1056/ab592c
[9] Y. Yazawa, T. Kitatani, J. Minemura, K. Tamura, K.
Mochizuki, and T. Warabisako, AlGaAs solar cells grown by MBE
for high-efficiency tandem cells, Sol. Energy Mater. Sol. Cells
35, 39–44 (1994),
https://doi.org/10.1016/0927-0248(94)90120-1
[10] K. Chang, J. Wu, D. Liu, D. Liou, and C. Lee, High quality
AlGaAs layers grown by molecular beam epitaxy at low
temperatures, J. Mater. Sci.: Mater. Electron.
3, 11–15
(1992)
https://doi.org/10.1007/BF00701087
[11] A. Chin and K. Lee, High quality Al(Ga)As/GaAs/Al(Ga)As
quantum wells grown on (111)A GaAs substrates, Appl. Phys. Lett.
68, 3437–3439 (1996),
https://doi.org/10.1063/1.115785
[12] W. Liu, Investigation of electrical and photoluminescent
properties of MBE-grown Al
xGa
1-xAs
layers, J. Mater. Sci.
25, 1765–1772 (1990),
https://doi.org/10.1007/BF01045382
[13] S. Miyazawa, Y. Sekiguchi, and M. Okuda, High-reliability
GaAs/AlGaAs multiquantum well lasers grown at a low temperature
(375°C), Appl. Phys. Lett.
63, 3583–3585 (1993),
https://doi.org/10.1063/1.110104
[14] S. Fujimoto, M. Aoki, and Y. Horikoshi, X-ray analysis of
In distribution in molecular beam epitaxy grown InGaAs/GaAs
quantum well structures, Jpn. J. Appl. Phys.
38,
1872–1874 (1999),
https://doi.org/10.1143/JJAP.38.1872
[15] M. Mashita, Y. Hiyama, K. Arai, B. Koo, and T. Yao, Indium
reevaporation during molecular beam epitaxial growth of InGaAs
layers on GaAs substrates, Jpn. J. Appl. Phys.
39, 4435
(2000),
https://doi.org/10.1143/JJAP.39.4435
[16] K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, Surface
segregation of In atoms during molecular beam epitaxy and its
influence on the energy levels in InGaAs/GaAs quantum wells,
Appl. Phys. Lett.
61, 557–559 (1992),
https://doi.org/10.1063/1.107835
[17] L.C. Andreani, A. Pasquarello, and F. Bassani, Hole
subbands in strained GaAs-GaAlAs quantum wells: Exact solution
of the effective mass equation, Phys. Rev. B
36, 5887
(1987),
https://doi.org/10.1103/PhysRevB.36.5887
[18] Y. Maidaniuk, R. Kumar, Y.I. Mazur, A. Kuchuk, M. Benamara,
P. Lytvyn, and G. Salamo, Indium segregation in ultra-thin
In(Ga)As/GaAs single quantum wells revealed by photoluminescence
spectroscopy, Appl. Phys. Lett.
118, 062104 (2021),
https://doi.org/10.1063/5.0039107
[19] W. Liu, H. Wang, J. Wang, Q. Wang, J. Wang, J. Fan, Y. Zou,
and X. Ma, The improvement properties of InGaAs/InGaAsP multiple
quantum wells using the GaAs insertion layer, Thin Solid Films
756,
139363 (2022),
https://doi.org/10.1016/j.tsf.2022.139363
[20] M. Hino, M. Asami, K. Watanabe, Y. Nakano, and M. Sugiyama,
Enhanced radiative efficiency of InGaAs/GaAsP multiple quantum
wells by optimizing the thickness of interlayers, Phys. Status
Solidi A
219, 2100426 (2022)
https://doi.org/10.1002/pssa.202100426
[21] B. Zhang, H. Wang, X. Wang, Q. Wang, J. Fan, Y. Zou, and X.
Ma, Effect of GaAs insertion layer on the properties improvement
of InGaAs/AlGaAs multiple quantum wells grown by metal-organic
chemical vapor deposition, J. Alloys Compd.
872, 159470
(2021),
https://doi.org/10.1016/j.jallcom.2021.159470
[22] Z. Yang, B. Qiu, S. Ma, B. Xu, Y. Shi, S. Yuan, L. Shang,
X. Hao, and J. Zhang, InGaAs/AlGaAs MQWs grown by MBE:
Optimizing GaAs insertion layer thickness to enhance interface
quality and luminescent property, Mater. Sci. Semiconduct.
Process.
180, 108584 (2024),
https://doi.org/10.1016/j.mssp.2024.108584
[23] A. Zelioli, A. Špokas, B. Čechavičius, M. Talaikis, S.
Stanionytė, A. Vaitkevičius, A. Čerškus, E. Dudutienė, and R.
Butkutė, In-depth investigation of emission homogeneity of
InGaAs multiple quantum wells using spatially resolved
spectroscopy. Available at SSRN:
https://ssrn.com/abstract=4813221
(2024) or
https://doi.org/10.2139/ssrn.4813221
[24] Y.P. Varshni, Temperature dependence of the energy gap in
semiconductors, Physica
34(1), 149–154 (1967),
https://doi.org/10.1016/0031-8914(67)90062-6