[PDF]    https://doi.org/10.3952/physics.2024.64.4.5

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 244–252 (2024)

OPTIMIZATION OF AlGaAs BARRIER FOR InGaAs QUANTUM WELLS EMITTING IN THE NEAR INFRARED
Andrea Zeliolia, Justas Žuvelisa,b, Ugnė Cibulskaitėb, Aivaras Špokasa,b, Evelina Dudutienėa, Augustas Vaitkevičiusa,b, Sandra Stanionytėa, Bronislovas Čechavičiusa, and Renata Butkutėa
a State Research Institute Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
b Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: andrea.zelioli@ftmc.lt

Received 12 November 2024; accepted 12 November 2024

The results of a study aimed at optimizing the optical properties of InGaAs quantum well structures by employing different barrier designs are presented. Single rectangular InGaAs quantum wells with approximately 21% indium and AlGaAs barriers, with different Al content 12, 20 and 30%, were theoretically modelled using the nextnano3 software to calculate band edges and levels in the quantum wells. A series of samples were grown using molecular beam epitaxy to clarify the influence of the Al fraction in the AlGaAs barriers on the optical properties of the quantum structures. Atomic force microscopy measurements were used to evaluate the surface roughness of the grown structures, while photoluminescence investigations provided insight into the optical quality and carrier confinement effects. The investigations revealed that the introduction of AlGaAs barriers resulted in an increased carrier confinement inside of the quantum well, but consequently resulted in the degradation of the InGaAs quantum well quality with the increase of aluminium content in the barrier. It was determined that a barrier with 12% of Al can be used to balance these effects, by providing a sufficient confinement, while retaining a satisfactory crystalline quality of the quantum structures.
Keywords: AIII-BV, molecular beam epitaxy, near infrared, photoluminescence, atomic force microscopy, X-ray diffraction

AlGaAs BARJERO OPTIMIZAVIMAS InGaAs KVANTINĖMS DUOBĖMS, SPINDULIUOJANČIOMS ARTIMOJOJE INFRARAUDONOJOJE SPEKTRO SRITYJE
Andrea Zeliolia, Justas Žuvelisa,b, Ugnė Cibulskaitėb, Aivaras Špokasa,b, Evelina Dudutienėa, Augustas Vaitkevičiusa,b, Sandra Stanionytėa, Bronislovas Čechavičiusa, Renata Butkutėa

a Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b Vilniaus universiteto Fotonikos ir nanotechnologijų institutas, Vilnius, Lietuva

Tirta pavienių InGaAs kvantinių duobių darinių optinės kokybės priklausomybė nuo barjero dizaino. Dariniai su viena stačiakampe InGaAs kvantine duobe (∼21 % indžio) ir AlGaAs barjerais (su skirtingomis Al koncentracijomis nuo 0 iki 30 %) buvo modeliuojami nextnano3 programine įranga, siekiant įvertinti sugerties juostos kraštą ir lygmenis kvantinėje duobėje. Serija bandinių buvo užauginta ant pusiau izoliuojančių GaAs padėklų naudojant molekulinių pluoštelių epitaksiją. Atominių jėgų mikroskopija ir rentgeno spindulių difrakcija buvo naudojamos bandinių paviršių šiurkštumui ir sluoksnių sąlyčio ribų kokybei įvertinti. Fotoliuminescencijos tyrimai suteikė informacijos apie Al koncentracijos AlGaAs barjere įtaką kvantinių duobių optinei kokybei bei krūvininkų sąspraudai. Tyrimai atskleidė, kad didėjant Al koncentracijai AlGaAs barjere padidėja krūvininkų pagavimas kvantinėje duobėje, bet kartu prastėja InGaAs kvantinės duobės kristalografinė kokybė. Buvo nustatyta, kad barjeras su 12 % Al gali būti naudojamas šiems efektams subalansuoti, pasiekiant optimalią krūvininkų sąspraudą, bei išlaikant patenkinamą kvantinės duobės kristalinę kokybę.


References / Nuorodos

[1] S. Hu, D. Young, S. Corzine, A. Gossard, and L. Coldren, High-efficiency and low-threshold InGaAs/AlGaAs quantum-well lasers, J. Appl. Phys. 76, 3932–3934 (1994),
https://doi.org/10.1063/1.357408
[2] F. Beffa, H. Jäckel, M. Achtenhagen, C. Harder, and D. Erni, High-temperature optical gain of 980 nm InGaAs/AlGaAs quantum-well lasers, Appl. Phys. Lett. 77, 2301–2303 (2000),
https://doi.org/10.1063/1.1317541
[3] L. Han, M. Zhao, X. Tang, W. Huo, Z. Deng, Y. Jiang, W. Wang, H. Chen, C. Du, and H. Jia, Luminescence study in InGaAs/AlGaAs multi-quantum-well light emitting diode with p-n junction engineering, J. Appl. Phys. 127, 085706 (2020),
https://doi.org/10.1063/1.5136300
[4] H. Yang, Y. Zheng, Z. Tang, N. Li, X. Zhou, P. Chen, and J. Wang, MBE growth of high performance very long wavelength InGaAs/GaAs quantum well infrared photodetectors, J. Phys. D 53, 135110 (2020)
https://doi.org/10.1088/1361-6463/ab66d7
[5] B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S.W. Koch, J.V. Moloney, M. Koch, and W. Stolz, 106 W continuous wave output power from vertical-external-cavity surface-emitting laser, Electron. Lett. 48(9), 516–517 (2012),
https://doi.org/10.1049/el.2012.0531
[6] D. Das, H. Ghadi, B. Tongbram, S. Singh, and S. Chakrabarti, The impact of confinement enhancement AlGaAs barrier on the optical and structural properties of InAs/InGaAs/GaAs submonolayer quantum dot heterostructures, J. Lumin. 192, 277–282 (2017),
https://doi.org/10.1016/j.jlumin.2017.06.054
[7] H. Dong, J. Sun, S. Ma, J. Liang, T. Lu, Z. Jia, X. Liu, and B. Xu, Effect of potential barrier height on the carrier transport in InGaAs/GaAsP multi-quantum wells and photoelectric properties of laser diode, Phys. Chem. Chem. Phys. 18, 6901–6912 (2016),
https://doi.org/10.1039/C5CP07805A
[8] Y.-F. Wang, M.I. Niass, F. Wang, and Y.-H. Liu, Improvement of radiative recombination rate in deep ultraviolet laser diodes with steplike quantum barrier and alluminum content-graded electron blocking layers, Chinese Phys. B 29, 017301 (2020),
https://doi.org/10.1088/1674-1056/ab592c
[9] Y. Yazawa, T. Kitatani, J. Minemura, K. Tamura, K. Mochizuki, and T. Warabisako, AlGaAs solar cells grown by MBE for high-efficiency tandem cells, Sol. Energy Mater. Sol. Cells 35, 39–44 (1994),
https://doi.org/10.1016/0927-0248(94)90120-1
[10] K. Chang, J. Wu, D. Liu, D. Liou, and C. Lee, High quality AlGaAs layers grown by molecular beam epitaxy at low temperatures, J. Mater. Sci.: Mater. Electron. 3, 11–15 (1992)
https://doi.org/10.1007/BF00701087
[11] A. Chin and K. Lee, High quality Al(Ga)As/GaAs/Al(Ga)As quantum wells grown on (111)A GaAs substrates, Appl. Phys. Lett. 68, 3437–3439 (1996),
https://doi.org/10.1063/1.115785
[12] W. Liu, Investigation of electrical and photoluminescent properties of MBE-grown AlxGa1-xAs layers, J. Mater. Sci. 25, 1765–1772 (1990),
https://doi.org/10.1007/BF01045382
[13] S. Miyazawa, Y. Sekiguchi, and M. Okuda, High-reliability GaAs/AlGaAs multiquantum well lasers grown at a low temperature (375°C), Appl. Phys. Lett. 63, 3583–3585 (1993),
https://doi.org/10.1063/1.110104
[14] S. Fujimoto, M. Aoki, and Y. Horikoshi, X-ray analysis of In distribution in molecular beam epitaxy grown InGaAs/GaAs quantum well structures, Jpn. J. Appl. Phys. 38, 1872–1874 (1999),
https://doi.org/10.1143/JJAP.38.1872
[15] M. Mashita, Y. Hiyama, K. Arai, B. Koo, and T. Yao, Indium reevaporation during molecular beam epitaxial growth of InGaAs layers on GaAs substrates, Jpn. J. Appl. Phys. 39, 4435 (2000),
https://doi.org/10.1143/JJAP.39.4435
[16] K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells, Appl. Phys. Lett. 61, 557–559 (1992),
https://doi.org/10.1063/1.107835
[17] L.C. Andreani, A. Pasquarello, and F. Bassani, Hole subbands in strained GaAs-GaAlAs quantum wells: Exact solution of the effective mass equation, Phys. Rev. B 36, 5887 (1987),
https://doi.org/10.1103/PhysRevB.36.5887
[18] Y. Maidaniuk, R. Kumar, Y.I. Mazur, A. Kuchuk, M. Benamara, P. Lytvyn, and G. Salamo, Indium segregation in ultra-thin In(Ga)As/GaAs single quantum wells revealed by photoluminescence spectroscopy, Appl. Phys. Lett. 118, 062104 (2021),
https://doi.org/10.1063/5.0039107
[19] W. Liu, H. Wang, J. Wang, Q. Wang, J. Wang, J. Fan, Y. Zou, and X. Ma, The improvement properties of InGaAs/InGaAsP multiple quantum wells using the GaAs insertion layer, Thin Solid Films 756, 139363 (2022),
https://doi.org/10.1016/j.tsf.2022.139363
[20] M. Hino, M. Asami, K. Watanabe, Y. Nakano, and M. Sugiyama, Enhanced radiative efficiency of InGaAs/GaAsP multiple quantum wells by optimizing the thickness of interlayers, Phys. Status Solidi A 219, 2100426 (2022)
https://doi.org/10.1002/pssa.202100426
[21] B. Zhang, H. Wang, X. Wang, Q. Wang, J. Fan, Y. Zou, and X. Ma, Effect of GaAs insertion layer on the properties improvement of InGaAs/AlGaAs multiple quantum wells grown by metal-organic chemical vapor deposition, J. Alloys Compd. 872, 159470 (2021),
https://doi.org/10.1016/j.jallcom.2021.159470
[22] Z. Yang, B. Qiu, S. Ma, B. Xu, Y. Shi, S. Yuan, L. Shang, X. Hao, and J. Zhang, InGaAs/AlGaAs MQWs grown by MBE: Optimizing GaAs insertion layer thickness to enhance interface quality and luminescent property, Mater. Sci. Semiconduct. Process. 180, 108584 (2024),
https://doi.org/10.1016/j.mssp.2024.108584
[23] A. Zelioli, A. Špokas, B. Čechavičius, M. Talaikis, S. Stanionytė, A. Vaitkevičius, A. Čerškus, E. Dudutienė, and R. Butkutė, In-depth investigation of emission homogeneity of InGaAs multiple quantum wells using spatially resolved spectroscopy. Available at SSRN: https://ssrn.com/abstract=4813221 (2024) or
https://doi.org/10.2139/ssrn.4813221
[24] Y.P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica 34(1), 149–154 (1967),
https://doi.org/10.1016/0031-8914(67)90062-6