[PDF]    https://doi.org/10.3952/physics.2024.64.4.6

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 64, 253–258 (2024)

DEPENDENCE OF TERAHERTZ PHOTOCONDUCTIVE SWITCH PERFORMANCE ON METAL CONTACT GEOMETRY
Ignas Nevinskasa, Mindaugas Kamarauskasa, Andrejus Geižutisa, Vitalij Kovalevskija, Andrius Bičiūnasa, Andrzej Urbanowicza, Ričardas Norkusa, and Kęstutis Ikamasa,b,c
a Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
b Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
c The General Jonas Žemaitis Military Academy of Lithuania, Šilo 5A, 10322 Vilnius, Lithuania
Email: ignas.nevinskas@ftmc.lt
Received 18 June 2024; revised 15 October 2024; accepted 15 October 2024

This study investigates the emission and spectral characteristics of photoconductive THz switches employing coplanar stripline contact geometries fabricated on a GaAs substrate. The experimental results reveal how the power outputs as well as the spectral shape are significantly influenced by the strip width dimension. Utilizing the Drude–Lorentz conductivity model, photocarrier dynamics were analyzed through an RLC circuit framework, offering insights into how the contact design influences the spectral response. Our findings suggest that matching the photocurrent impedance to that of the metallic contacts is critical to improving the efficiency of these devices.
Keywords: photoconductive switch, terahertz, THz, GaAs, gallium arsenide

TERAHERCINIŲ FOTOJUNGIKLIŲ CHARAKTERISTIKŲ PRIKLAUSOMYBĖS NUO METALINIŲ KONTAKTŲ GEOMETRIJOS
Ignas Nevinskasa, Mindaugas Kamarauskasa, Andrejus Geižutisa, Vitalij Kovalevskija, Andrius Bičiūnasa, Andrzej Urbanowicza, Ričardas Norkusa, Kęstutis Ikamasa,b,c

a Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b Vilniaus universiteto Taikomosios elektrodinamikos ir telekomunikacijų institutas, Vilnius, Lietuva
c Generolo Jono Žemaičio Lietuvos karo akademija, Vilnius, Lietuva

Tiriamos terahercinių fotojungiklių ant GaAs padėklo emisijos ir spektro charakteristikų priklausomybės nuo koplanarinių juostelių kontaktų geometrijos. Eksperimentiškai parodoma, kaip stipriai keičiasi išspinduliuojama galia bei spektro forma nuo kontaktinės juostelės pločio. Naudojantis Drude ir Lorentz elektrinio laidumo modeliu, fotokrūvininkų dinamika išanalizuota RLC grandinės modelyje, suteikiančiame įžvalgų apie kontaktų dizaino įtaką fotojungiklių atsakui. Nustatėme, kad suderinti fotosrovės impedansą su metalinių kontaktų impedansu yra kertinis reikalavimas šių prietaisų našumui padidinti.


References / Nuorodos

[1] D.H. Auston, K.P. Cheung, and P.R. Smith, Picosecond photoconducting Hertzian dipoles, Appl. Phys. Lett. 45, 284 (1984),
https://doi.org/10.1063/1.95174
[2] Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, Design and performance of singular electric field terahertz photoconducting antennas, Appl. Phys. Lett. 71, 2076 (1997),
https://doi.org/10.1063/1.119346
[3] M. Tani, S. Matsuura, K. Sakai, and S.-I. Nakashima, Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs, Appl. Opt. 36, 7853 (1997),
https://doi.org/10.1364/AO.36.007853
[4] P.J. Hale, J. Madeo, C. Chin, S.S. Dhillon, J. Mangeney, J. Tignon, and K.M. Dani, 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas, Opt. Express 22, 26358 (2014),
https://doi.org/10.1364/OE.22.026358
[5] F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas, Appl. Phys. Lett. 96, 211104 (2010),
https://doi.org/10.1063/1.3436724
[6] S. Alfihed, I.G. Foulds, and J.F. Holzman, Characteristics of bow-tie antenna structures for semi-insulating GaAs and InP photoconductive terahertz emitters, Sensors 21, 3131 (2021),
https://doi.org/10.3390/s21093131
[7] X. Zhang, F. Zhan, X. Wei, W. He, and C. Ruan, Performance enhancement of photoconductive antenna using saw-toothed plasmonic contact electrodes, Electronics 10, 2693 (2021),
https://doi.org/10.3390/electronics10212693
[8] D.R. Bacon, J. Madéo, and K.M. Dani, Photoconductive emitters for pulsed terahertz generation, J. Opt. 23, 064001 (2021)
https://doi.org/10.1088/2040-8986/abf6ba
[9] K. Anusha, D. Mohana Geetha, and A. Amsaveni, Advances in Terahertz Technology and its Applications, eds. S. Das, N. Anveshkumar, J. Dutta, A. Biswas (Springer, 2021) pp. 337362,
https://doi.org/10.1007/978-981-16-5731-3_19
[10] B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T.E. Darcie, Nanoplasmonic terahertz photoconductive switch on GaAs, Nano Lett. 12, 6255 (2012),
https://doi.org/10.1021/nl303314a
[11] A. Jooshesh, L. Smith, M. Masnadi-Shirazi, V. Bahrami-Yekta, T. Tiedje, T.E. Darcie, and R. Gordon, Nanoplasmonics enhanced terahertz sources, Opt. Express 22, 27992 (2014),
https://doi.org/10.1364/OE.22.027992
[12] S.-H. Yang, M.R. Hashemi, C.W. Berry, and M. Jarrahi, 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes, IEEE Trans. Terahertz Sci. Technol. 4, 575 (2014),
https://doi.org/10.1109/TTHZ.2014.2342505
[13] S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T.A. Vartanyan, P. Belov, A. Alú, and E.U. Rafailov, Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures, Sci. Rep. 8, 6624 (2018),
https://doi.org/10.1038/s41598-018-25013-7
[14] M. Bashirpour, J. Poursafar, M. Kolahdouz, M. Hajari, M. Forouzmehr, M. Neshat, H. Hajihoseini, M. Fathipour, Z. Kolahdouz, and G. Zhang, Terahertz radiation enhancement in dipole photoconductive antenna on LT-GaAs using a gold plasmonic nanodisk array, Opt. Laser Technol. 120, 105726 (2019),
https://doi.org/10.1016/j.optlastec.2019.105726
[15] TeraVil Ltd | T-SPEC Real-Time Terahertz Spectrometer,
https://www.teravil.lt/t-spec.php
[16] A. Krotkus, K. Bertulis, R. Adomavičius, V. Pačebutas, and A. Geižutis, Semiconductor materials for ultrafast optoelectronic applications, Lith. J. Phys. 49, 359 (2009),
https://doi.org/10.3952/lithjphys.49407
[17] L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas, IEEE J. Sel. Top. Quantum Electron. 7, 615 (2001),
https://doi.org/10.1109/2944.974233
[18] TeraVil Ltd | THz Emitter/Detector Mounting Stage,
https://www.teravil.lt/mountingstage.php
[19] Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, Design and performance of singular electric field terahertz photoconducting antennas, Appl. Phys. Lett. 71, 2076 (1997),
https://doi.org/10.1063/1.119346
[20] F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas, Appl. Phys. Lett. 96, 211104 (2010),
https://doi.org/10.1063/1.3436724
[21] P. Smith, D. Auston, and M. Nuss, Subpicosecond photoconducting dipole antennas, IEEE J. Quantum Electron. 24, 255 (1988),
https://doi.org/10.1109/3.121
[22] D.A. Cardwell and D.S. Ginley, Handbook of Superconducting Materials, 1st ed. (CRC Press, 2002),
https://doi.org/10.1201/9781420034202
[23] M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, Circuit analysis in metaloptics, Photonics Nanostructures: Fundam. Appl. 10, 166 (2012),
https://doi.org/10.1016/j.photonics.2011.12.002
[24] M.S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M.C. Wu, Optical antenna enhanced spontaneous emission, PNAS 112, 1704 (2015),
https://doi.org/10.1073/pnas.1423294112
[25] P.U. Jepsen, R.H. Jacobsen, and S.R. Keiding, Generation and detection of terahertz pulses from biased semiconductor antennas, J. Opt. Soc. Am. B 13, 2424 (1996),
https://doi.org/10.1364/JOSAB.13.002424
[26] A. Reklaitis, A. Krotkus, and G. Grigaliunaite, Enhanced drift velocity of photoelectrons in a semiconductor with ultrafast carrier recombination, Semicond. Sci. Technol. 14, 945 (1999),
https://doi.org/10.1088/0268-1242/14/10/311
[27] M. Bernardi, D. Vigil-Fowler, C.S. Ong, J.B. Neaton, and S.G. Louie, Ab initio study of hot electrons in GaAs, PNAS 112, 5291 (2015),
https://doi.org/10.1073/pnas.1419446112