References /
Nuorodos
[1] L. Möckl, D.C. Lamb, and C. Bräuchle, Super-resolved
fluorescence microscopy: Nobel Prize in Chemistry 2014 for Eric
Betzig, Stefan Hell, and William E. Moerner, Angew. Chemie Int.
Ed.
53, 13972 (2014),
https://doi.org/10.1002/anie.201410265
[2] S.J. Sahl, S.W. Hell, and S. Jakobs, Fluorescence nanoscopy
in cell biology, Nat. Rev. Mol. Cell Biol.
18, 685
(2017),
https://doi.org/10.1038/nrm.2017.71
[3] Y.M. Sigal, R. Zhou, and X. Zhuang, Visualizing and
discovering cellular structures with super-resolution
microscopy, Science
361, 880 (2018),
https://doi.org/10.1126/science.aau1044
[4] M.S. Dietz and M. Heilemann, Optical super-resolution
microscopy unravels the molecular composition of functional
protein complexes, Nanoscale
11, 17981 (2019),
https://doi.org/10.1039/C9NR06364A
[5] S. Pujals, N. Feiner-Gracia, P. Delcanale, I. Voets, and L.
Albertazzi, Super-resolution microscopy as a powerful tool to
study complex synthetic materials, Nat. Rev. Chem.
3, 68
(2019),
https://doi.org/10.1038/s41570-018-0070-2
[6] C.S. Hansel, M.N. Holme, S. Gopal, and M.M. Stevens,
Advances in high-resolution microscopy for the study of
intracellular interactions with biomaterials, Biomaterials
226,
119406 (2020),
https://doi.org/10.1016/j.biomaterials.2019.119406
[7] E. Abbe, Beiträge zur theorie des mikroskops und der
mikroskopischen wahrnehmung, Arch. für Mikroskopische Anat.
9,
413 (1873)
https://doi.org/10.1007/BF02956173
[8] D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses,
D.E. Milkie, J.R. Beach, J.A. Hammer, M. Pasham, et al.,
Extended-resolution structured illumination imaging of endocytic
and cytoskeletal dynamics, Science
349, aab3500 (2015),
https://doi.org/10.1126/science.aab3500
[9] B. Vinçon, C. Geisler, and A. Egner, Pixel hopping enables
fast STED nanoscopy at low light dose, Opt. Express
28,
4516 (2020),
https://doi.org/10.1364/OE.385174
[10] E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S.
Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz,
and H.F. Hess, Imaging intra-cellular fluorescent proteins at
nanometer resolution, Science
313, 1642 (2006),
https://doi.org/10.1126/science.1127344
[11] M.J. Rust, M. Bates, and X. Zhuang, Subdiffraction-limit
imaging by stochastic optical reconstruction microscopy (STORM),
Nat. Methods
3, 793 (2006),
https://doi.org/10.1038/nmeth929
[12] S.W. Hell and J. Wichmann, Breaking the diffraction
resolution limit by stimulated emission:
Stimulated-emission-depletion fluorescence microscopy, Opt.
Lett.
19, 780 (1994),
https://doi.org/10.1364/OL.19.000780
[13] S. Hayashi, Resolution doubling using confocal microscopy
via analogy with structured illumination microscopy, Jpn. J.
Appl. Phys.
55, 082501 (2016),
https://doi.org/10.7567/JJAP.55.082501
[14] S. Culley, K.L. Tosheva, P.M. Pereira, and R. Henriques,
SRRF: Universal live-cell super-resolution microscopy, Int. J.
Biochem. Cell Biol.
101, 74 (2018),
https://doi.org/10.1016/j.biocel.2018.05.014
[15] N. Gustafsson, S. Culley, G. Ashdown, D.M. Owen, P.M.
Pereira, and R. Henriques, Fast live-cell conventional
fluorophore nanoscopy with ImageJ through super-resolution
radial fluctuations, Nat. Commun.
7, 12471 (2016),
https://doi.org/10.1038/ncomms12471
[16] T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J.
Enderlein, Fast, background-free, 3D superresolution optical
fluctuation imaging (SOFI), Proc. Natl. Acad. Sci. USA
106,
22287 (2009),
https://doi.org/10.1073/pnas.0907866106
[17] T. Wilson, Resolution and optical sectioning in the
confocal microscope, J. Microsc.
244, 113 (2011),
https://doi.org/10.1111/j.1365-2818.2011.03549.x
[18] S.W. Hell, Far-field optical nanoscopy, Science
316,
1153 (2007),
https://doi.org/10.1126/science.1137395
[19] J. Requejo-Isidro, Fluorescence nanoscopy. Methods and
applications, J. Chem. Biol.
6, 97 (2013),
https://doi.org/10.1007/s12154-013-0096-3
[20] M. Sivaguru, M.A. Urban, G. Fried, C.J. Wesseln, L. Mander,
and S.W. Punyasena, Comparative performance of airyscan and
structured illumination superresolution microscopy in the study
of the surface texture and 3D shape of pollen, Microsc. Res.
Tech.
81, 101 (2016),
https://doi.org/10.1002/jemt.22732
[21] C.J.R. Sheppard, Super-resolution in confocal imaging,
Optik (Stuttgart)
80, 53 (1988)
[22] C.J.R. Sheppard, S.B. Mehta, and R. Heintzmann,
Superresolution by image scanning microscopy using pixel
reassignment, Opt. Lett.
38, 2889 (2013),
https://doi.org/10.1364/OL.38.002889
[23] S. Roth, C.J.R. Sheppard, K. Wicker, and R. Heintzmann,
Optical photon reassignment microscopy (OPRA), Opt. Nanosc.
2,
5 (2013),
https://doi.org/10.1186/2192-2853-2-5
[24] C.B. Müller and J. Enderlein, Image scanning microscopy,
Phys. Rev. Lett.
104, 198101 (2010),
https://doi.org/10.1103/PhysRevLett.104.198101
[25] C. Roider, R. Heintzmann, R. Piestun, and A. Jesacher,
Deconvolution approach for 3D scanning microscopy with helical
phase engineering, Opt. Express
24, 15456 (2016),
https://doi.org/10.1364/OE.24.015456
[26] M. Castello, G. Tortarolo, M. Buttafava, T. Deguchi, F.
Villa, S. Koho, L. Pesce, M. Oneto, S. Pelicci, L. Lanzanó, et
al., A robust and versatile platform for image scanning
microscopy enabling super-resolution FLIM, Nat. Methods 16, 175
(2019),
https://doi.org/10.1038/s41592-018-0291-9
[27] J. Huff, The Airyscan detector from ZEISS: Confocal imaging
with improved signal-to-noise ratio and super-resolution, Nat.
Methods
12, i (2015),
https://doi.org/10.1038/nmeth.f.388
[28] G.M.R. De Luca, R.M.P. Breedijk, R.A.J. Brandt, A.H.C.
Zeelenberg, B.E. de Jong, W. Timmermans, L.N. Azar, R.A. Hoebe,
S. Stallinga, and E.M.M. Manders, Re-scan confocal microscopy:
scanning twice for better resolution, Biomed. Opt. Express
4,
2644 (2013),
https://doi.org/10.1364/BOE.4.002644
[29] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M.
Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B.
Schmid, et al., Fiji: An open-source platform for
biological-image analysis, Nat. Methods
9, 676 (2012),
https://doi.org/10.1038/nmeth.2019
[30] F. de Chaumont, S. Dallongeville, N. Chenouard, N. Hervé,
S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte,
Y.L. Montagner, et al., Icy: An open bioimage informatics
platform for extended reproducible research, Nat. Methods
9,
690 (2012),
https://doi.org/10.1038/nmeth.2075
[31] D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A.
Seitz, R. Guiet, C. Vonesch, and M. Unser, DeconvolutionLab2: An
open-source software for deconvolution microscopy, Methods
115,
28 (2017),
https://doi.org/10.1016/j.ymeth.2016.12.015
[32] W.H. Richardson, Bayesian-based iterative method of image
restoration, J. Opt. Soc. Am.
62, 55 (1972),
https://doi.org/10.1364/JOSA.62.000055
[33] L.B. Lucy, An iterative technique for the rectification of
observed distributions, Astron. J.
79, 745 (1974),
https://doi.org/10.1086/111605
[34] M. Minsky, Memoir on inventing the confocal scanning
microscope, Scanning
10, 128 (1988),
https://doi.org/10.1002/sca.4950100403
[35] C.J. Cogswell and K.G. Larkin, The specimen illumination
path and its effect on image quality, in:
Handbook of
Biological Confocal Microscopy, 2nd ed., Ch. 8, ed. J.B.
Pawley (Springer Science+Business Media, New York, 1995) pp.
127–137,
https://doi.org/10.1007/978-1-4757-5348-6_8
[36] W.V. Houston, A compound interferometer for fine structure
work, Phys. Rev.
29, 478 (1927),
https://doi.org/10.1103/PhysRev.29.478
[37] J.K. Fisher, A. Bourniquel, G. Witz, B. Weiner, M.
Prentiss, and N. Kleckner, Four-dimensional imaging of
E.
coli nucleoid organization and dynamics in living cells,
Cell
153, 882 (2013),
https://doi.org/10.1016/j.cell.2013.04.006
[38] C.K. Spahn, M. Glaesmann, J.B. Grimm, A.X. Ayala, L.D.
Lavis, and M. Heilemann, A toolbox for multiplexed
super-resolution imaging of the E. coli nucleoid and membrane
using novel PAINT labels, Sci. Rep.
8, 14768 (2018),
https://doi.org/10.1038/s41598-018-33052-3
[39] I. Schoen, J. Ries, E. Klotzsch, H. Ewers, and V. Vogel,
Binding-activated localization microscopy of DNA structures,
Nano Lett.
11, 4008 (2011),
https://doi.org/10.1021/nl2025954
[40] A. Le Gall, D.I. Cattoni, B. Guilhas, C. Mathieu-Demazière,
L. Oudjedi, J.-B. Fiche, J. Rech, S. Abrahamsson, H. Murray,
J.-Y. Bouet, and M. Nollmann, Bacterial partition complexes
segregate within the volume of the nucleoid, Nat. Communn.
7,
12107 (2016),
https://doi.org/10.1038/ncomms12107
[41] S. Wäldchen, J. Lehmann, T. Klein, S. van de Linde, and M.
Sauer, Light-induced cell damage in live-cell super-resolution
microscopy, Sci. Rep.
5, 15348 (2015),
https://doi.org/10.1038/srep15348
[42] J. Demmerle, C. Innocent, A.J. North, G. Ball, M. Müller,
E. Miron, A. Matsuda, I.M. Dobbie, Y. Markaki, and L.
Schermelleh, Strategic and practical guidelines for successful
structured illumination microscopy, Nat. Protoc. 12, 988 (2017),
https://doi.org/10.1038/nprot.2017.019
[43] M. Iwai, M.S. Roth, and K.K. Niyogi,
Subdiffraction-resolution live-cell imaging for visualizing
thylakoid membranes, Plant J.
96, 233 (2018),
https://doi.org/10.1111/tpj.14021
[44] D. Aquino, A. Schönle, C. Geisler, C. v Middendorff, C.A.
Wurm, Y. Okamura, T. Lang, S.W. Hell, and A. Egner, Two-color
nanoscopy of three-dimensional volumes by 4Pi detection of
stochastically switched fluorophores, Nat. Methods
8,
353 (2011),
https://doi.org/10.1038/nmeth.1583
[45] S. Hell and E.H.K. Stelzer, Properties of a 4Pi confocal
fluorescence microscope, J. Opt. Soc. Amer. A
9, 2159
(1992),
https://doi.org/10.1364/JOSAA.9.002159
[46] J. Bewersdorf, R. Schmidt, and S.W. Hell, Comparison of I5M
and 4Pi-microscopy, J. Microsc.
222, 105 (2006),
https://doi.org/10.1111/j.1365-2818.2006.01578.x