Received 3 October 2024; revised 16 October 2024; accepted 22
October 2024
References /
Nuorodos
[1] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii,
Quantum
Theory of Angular Momentum (World Scientific, Singapore,
1988),
https://doi.org/10.1142/0270
[2] S.J. Ališauskas and A.P. Jucys, Weight lowering operators
and the multiplicity-free isoscalar factors of the group
R5,
J. Math. Phys.
12, 594–605 (1971)
https://doi.org/10.1063/1.1665626
[3] S.J. Ališauskas and A.P. Jucys, Erratum: Weight lowering
operators and the multiplicity-free isoscalar factors of the
group
R5, J. Math. Phys. 13, 575 (1972)
https://doi.org/10.1063/1.1666016
[4] A.P. Jucys and A.A. Bandzaitis,
Angular Momentum Theory
in Quantum Physics (Mokslas, Vilnius, 1977) [in Russian]
[5] K. Srinivasa Rao, V. Rajeswari, and C.B. Chiu, A new Fortran
program for the 9j angular momentum coefficient, Comput. Phys.
Commun.
56, 231–248 (1989),
https://doi.org/10.1016/0010-4655(89)90021-0
[6] H. Rosengren, On the triple sum formula for Wigner 9j
symbols, J. Math. Phys. 39, 6730–6744 (1998),
https://doi.org/10.1063/1.532634
[7] H.M. Srivastava, Generalized Neumann expansions involving
hypergeometric functions, Proc. Cambridge Philos. Soc.
63,
425–429 (1967),
https://doi.org/10.1017/S0305004100041359
[8] G. Lauricella, Sulle funzioni ipergeometriche a piu
variabili, Rend. Circ. Mat. Palermo
7, 111–158 (1893),
https://doi.org/10.1007/BF03012437
[9] J. Van der Jeugt, S.N. Pitre, and K.S. Rao, Multiple
hypergeometric functions and 9-j coefficients, J. Phys. A: Math.
Gen.
27, 5251–5264 (1994),
https://doi.org/10.1088/0305-4470/27/15/023
[10] A.C.T. Wu, Structure of Ališauskas-Jucys form of the 9
j
coefficients, J. Math. Phys.
14, 1222–1223 (1973),
https://doi.org/10.1063/1.1666469
[11] I.M. Gel'fand, M.I. Graev, and N.Ya. Vilenkin,
Generalized
Functions, Volume 5: Integral Geometry and Representation
Theory (Academic, New York, 1966),
https://doi.org/10.1016/C2013-0-12222-2
[12] A.A. Bandzaitis, A. Karosiene, and A.P. Yutsis, On the
calculation of 9
j coefficients, Liet. Fiz. Rink.
4,
457–466 (1964), [in Russian]
[13] R.T. Sharp, Stretched
X-coefficients, Nucl. Phys. A
95, 222–228 (1967),
https://doi.org/10.1016/0375-9474(67)90163-7
[14] K. Srinivasa Rao and J. Van der Jeugt, Stretched 9-j
coefficients and summation theorems, J. Phys. A: Math. Gen.
27,
3083–3090 (1994),
https://doi.org/10.1088/0305-4470/27/9/022
[15] L. Zamick and S.J.Q. Robinson, Zeros of 6-
j symbols:
Atoms, nuclei, and bosons, Phys. Rev. C
84, 044325
(2011),
https://doi.org/10.1103/PhysRevC.84.044325
[16] J.-C. Pain, Special six-
j and nine-
j symbols
for a single-
j shell, Phys. Rev. C
84, 047303
(2011),
https://doi.org/10.1103/PhysRevC.84.047303
[17] J.-C. Pain, A note on recursive calculations of particular
9
j coefficients, Lith. J. Phys.
51, 194–198
(2011),
https://doi.org/10.3952/lithjphys.51303
[18] A.R. Edmonds,
Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, NJ, 1957),
https://doi.org/10.1515/9781400884186
[19] B. Kleszyk and L. Zamick, Analytical and numerical
calculations for the asymptotic behavior of unitary 9
j
coefficients, Phys. Rev. C
89, 044322 (2014),
https://doi.org/10.1103/PhysRevC.89.044322
[20] K.S. Rao and J. Van der Jeugt, Transformations of single
and double hypergeometric series from the triple sum series for
the 9-j coefficient, Int. J. Theor. Phys.
37, 891–905
(1998),
https://doi.org/10.1023/A:1026632900221
[21] J. Dougall, On Vandermonde's theorem and some more general
expansions, Proc. Edinburgh Math. Soc. 25, 114–132 (1907),
https://doi.org/10.1017/S0013091500033642
[22] G. Gasper and M. Rahman,
Basic Hypergeometric Series
(Cambridge University Press, 2004),
https://doi.org/10.1017/CBO9780511526251
[23] A.C. Dixon, Summation of a certain series, Proc. London
Math. Soc.
35, 284–291 (1902),
https://doi.org/10.1112/plms/s1-35.1.284
[24] Wolfram Research, Inc.,
Mathematica, Version 14.0
(Champaign, IL, 2024),
https://functions.wolfram.com/
On the website, the formula
https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric5F4/03/02/01/0001/
contains a typographical error: the parameter
n + 1/2
should be
n/2 + 1.
[25] J.G. Wills, On the evaluation of angular momentum coupling
coefficients, Comput. Phys. Commun.
2, 381–382 (1971),
https://doi.org/10.1016/0010-4655(71)90030-0
[26] V. Bretz, An improved method for calculation of angular
momentum coupling coefficients, Acta Phys. Acad. Sci. Hungaricae
40, 255–259 (1976),
https://doi.org/10.1007/BF03157502
[27] K. Srinivasa Rao, Computation of angular momentum
coefficients using sets of generalised hypergeometric functions,
Comput. Phys. Commun.
22, 297–302 (1981),
https://doi.org/10.1016/0010-4655(81)90063-1