[PDF]    https://doi.org/10.3952/physics.2025.65.1.2

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 65, 32–56 (2025)

SECOND-ORDER RAYLEIGH–SCHRÖDINGER PERTURBATION THEORY FOR THE GRASP2018 PACKAGE: VALENCE–VALENCE CORRELATIONS
Gediminas Gaigalas, Pavel Rynkun, and Laima Kitovienė
Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
Emails: gediminas.gaigalas@tfai.vu.lt; pavel.rynkun@tfai.vu.lt; laima.radziute@tfai.vu.lt

Received 22 November 2024; accepted 2 December 2024

The accurate description of electron correlations remains a major challenge in atomic calculations. In order to perform accurate calculations, it is necessary to consider various types of electron correlations and this often leads to extensive configuration state function (CSF) expansions. This work presents further development of the method based on the second-order perturbation theory to identify the most significant CSFs that have the greatest influence on core–valence, core, core–core and valence–valence correlations. This method is based on a combination of the relativistic configuration interaction method and the stationary second-order Rayleigh–Schrödinger many-body perturbation theory in an irreducible tensorial form [G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: core–valence correlations, Lith. J. Phys. 64(1), 20–39 (2024), https://doi.org/10.3952/physics.2024.64.1.3, G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: core correlations, Lit. J. Phys. 64(2), 73–81 (2024), https://doi.org/10.3952/physics.2024.64.2.1, and G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: core–core correlations, Lith. J. Phys. 64(3), 139–161 (2024), https://doi.org/10.3952/physics.2024.64.3.1]. The method is extended to include additionally valence–valence electron correlations. It can be applied for an atom or ion with any number of valence electrons for the calculation of energy spectra and other properties. Meanwhile, the correlations which cannot be included according to perturbation theory are taken into account in a regular way. The use of the developed method allows a significant reduction of CSFs especially for complex atoms and ions. As an example of its application, the atomic calculations of the energy structure for Se III ion are presented.
Keywords: configuration interaction, spin-angular integration, perturbation theory, tensorial algebra, valence–valence correlations, core–valence correlations, core correlations, core–core correlations

ANTROSIOS EILĖS RELĖJAUS IR ŠRĖDINGERIO TRIKDYMŲ TEORIJA, SKIRTA GRASP2018 PROGRAMINIAM PAKETUI: VALENTINĖS–VALENTINĖS KORELIACIJOS
Gediminas Gaigalas, Pavel Rynkun, Laima Kitovienė

Vilniaus universiteto Fizikos fakulteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Vienas pagrindinių uždavinių atomo struktūros skaičiavimuose yra tikslus elektronų koreliacijų įskaitymas. Norint atlikti tikslius skaičiavimus, būtina atsižvelgti į įvairių tipų elektronų koreliacijas, o tai dažnai veda prie didelės konfigūracinių būsenų funkcijų (KBF) erdvės. Šiame darbe toliau plėtojamas antrosios eilės trikdymų teorija grįstas metodas, siekiant nustatyti svarbiausias KBF, kurios daro didžiausią įtaką kamieno–valentinėms, kamieno, kamieno–kamieno ir valentinėms–valentinėms koreliacijoms. Šis metodas paremtas reliatyvistinės superpozicijos ir stacionariosios antrosios eilės Relėjaus ir Šrėdingerio daugelio kūnų trikdymų teorijos neredukuotinėje tensorinėje formoje (G. Gaigalas, P. Rynkun, L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core–valence correlations, Lith. J. Phys. 64(1), 20–39 (2024), https://doi.org/10.3952/physics.2024.64.1.3), (G. Gaigalas, P. Rynkun, L. Kitovienė,  Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core correlations, Lith. J. Phys. 64(2), 73–81 (2024), https://doi.org/10.3952/physics.2024.64.2.1), (G. Gaigalas, P. Rynkun, L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core–core correlations, Lith. J. Phys. 64(3), 139–161 (2024), https://doi.org/10.3952/physics.2024.64.3.1) metodų deriniu. Metodas yra išplėstas norint papildomai įtraukti valentines–valentines koreliacijas. Šį metodą galima taikyti atomo ar jono energijos spektro ir kitų charakteristikų skaičiavimui, esant skirtingiems valentinių sluoksnių pagrindiniams, orbitiniams kvantiniams skaičiams bei užpildymams. O koreliacijos, kurių negalima įtraukti pagal trikdymų teoriją, yra įtraukiamos naudojant įprastą būdą. Sukurtas metodas leidžia žymiai sumažinti KBF erdvę, tai ypač aktualu sudėtingiems atomams ir jonams. Darbe, kaip metodo taikymo pavyzdys, taip pat pateikiami Se III energijos struktūros skaičiavimai.


References / Nuorodos

[1] P. Jönsson, G. Gaigalas, J. Bieroń, C. Froese Fischer, and I.P. Grant, New version: GRASP2K relativistic atomic structure package, Comput. Phys. Commun. 184(9), 2197–2203 (2013),
https://doi.org/10.1016/j.cpc.2013.02.016
[2] C. Froese Fischer, G. Gaigalas, P. Jönsson, and J. Bieroń, GRASP2018–A Fortran 95 version of the General Relativistic Atomic Structure Package, Comput. Phys. Commun. 237, 184–187 (2019),
https://doi.org/10.1016/j.cpc.2018.10.032
[3] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core–valence correlations, Lith. J. Phys. 64(1), 20–39 (2024),
https://doi.org/10.3952/physics.2024.64.1.3
[4] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core correlations, Lith. J. Phys. 64(2), 73–81 (2024),
https://doi.org/10.3952/physics.2024.64.2.1
[5] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order Rayleigh–Schrödinger perturbation theory for the GRASP2018 package: Core–core correlations, Lith. J. Phys. 64(3), 139–161 (2024),
https://doi.org/10.3952/physics.2024.64.3.1
[6] P. Jönsson, M. Godefroid, G. Gaigalas, J. Ekman, J. Grumer, W. Li, J. Li, T. Brage, I.P. Grant, J. Bieroń, and C. Froese Fischer, An introduction to relativistic theory as implemented in GRASP, Atoms 11(1), 7 (2023),
https://doi.org/10.3390/atoms11010007
[7] I. Lindgren and J. Morrison, Atomic Many-body Theory (Springer-Verlag Berlin Heidelberg, New York, 1982),
https://doi.org/10.1007/978-3-642-96614-9
[8] I. Hubač and S. Wilson, Brillouin–Wigner Methods for Many-body Systems (Springer Dordrecht Heidelberg London New York, 2010),
https://doi.org/10.1007/978-90-481-3373-4
[9] S. Gustafsson, P. Jönsson, C. Froese Fischer, and I.P. Grant, Combining multiconfiguration and perturbation methods: perturbative estimates of core–core electron correlation contributions to excitation energies in Mg-like iron, Atoms 5(1), 3 (2017),
https://doi.org/10.3390/atoms5010003
[10] G. Gaigalas, P. Rynkun, L. Radžiūtė, D. Kato, M. Tanaka, and P. Jönsson, Energy level structure and transition data of Er2+, Astrophys. J. Suppl. Ser. 248, 13 (2020),
https://doi.org/10.3847/1538-4365/ab881a
[11] P. Jönsson, G. Gaigalas, Ch.F. Fischer, J. Bieroń, I.P. Grant, T. Brage, J. Ekman, M. Godefroid, J. Grumer, J. Li, and W. Li, GRASP manual for users, Atoms 11(4), 68 (2023),
https://doi.org/10.3390/atoms11040068
[12] G. Merkelis, G. Gaigalas, and Z. Rudzikas, Irreducible tensorial form of the effective Hamiltonian of an atom and the diagrammatic representation in the first two orders of the stationary perturbation theory, Liet. Fiz. Rink. (Sov. Phys. Coll.) 25, 14–31 (1985) [in Russian]
[13] G. Merkelis, G. Gaigalas, J.G. Kaniauskas, and Z. Rudzikas, Application of the graphical method of the angular momentum theory to the study of the stationary perturbation series, Izvest. Acad. Nauk SSSR, Phys. Coll. 50, 1403–1410 (1986) [in Russian]
[14] G. Gaigalas, Irreducible Tensorial Form of the Stationary Perturbation Theory for Atoms and Ions with Open Shells, PhD Thesis (Institute of Physics, Vilnius, 1989) [in Russian],
https://kolekcijos.biblioteka.vu.lt/en/objects/990007058341008452#00001
[15] G. Racah, Theory of complex spectra. I, Phys. Rev. 61, 186 (1942),
https://doi.org/10.1103/PhysRev.61.186
[16] G. Racah, Theory of complex spectra. II, Phys. Rev. 62, 438 (1942),
https://doi.org/10.1103/PhysRev.62.438
[17] G. Racah, Theory of complex spectra. III, Phys. Rev. 63, 367 (1943),
https://doi.org/10.1103/PhysRev.63.367
[18] G. Racah, Theory of complex spectra. IV, Phys. Rev. 76, 1352 (1949),
https://doi.org/10.1103/PhysRev.76.1352
[19] Z.B. Rudzikas, Theoretical Atomic Spectroscopy (Cambrige University Press, Cambridge, 1997),
https://doi.org/10.1017/CBO9780511524554
[20] Z.B. Rudzikas and J.M. Kaniauskas, Quasispin and Isospin in the Theory of Atom (Mokslas, Vilnius, 1984) [in Russian]
[21] G. Gaigalas and Z. Rudzikas, On the secondly quantized theory of the many-electron atom, J. Phys. B 29(15), 3303 (1996),
https://doi.org/10.1088/0953-4075/29/15/007
[22] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, An efficient approach for spin-angular integrations in atomic structure calculations, J. Phys. B 30(17), 3747 (1997),
https://doi.org/10.1088/0953-4075/30/17/006
[23] I.P. Grant, Relativistic Quantum Theory of Atoms and Molecules (Springer, New York, 2007),
https://doi.org/10.1007/978-0-387-35069-1
[24] P. Bogdanovich, G. Gaigalas, A. Momkauskaitė, and Z. Rudzikas, Accounting for admixed configurations in the second order of perturbation theory for complex atoms, Phys. Scr. 56(3), 230–239 (1997),
https://doi.org/10.1088/0031-8949/56/3/002
[25] P. Bogdanovich, G. Gaigalas, and A. Momkauskaitė, Accounting for correlation corrections to interconfigurational matrix elements, Lith. J. Phys. 38(5), 443–451 (1998) [in Russian]
[26] C. Froese Fischer, T. Brage, and P. Jönsson, Computational Atomic Structure: An MCHF Approach (IoP, Bristol, UK, 1997),
https://doi.org/10.1201/9781315139982
[27] G. Gaigalas, The library of subroutines for calculation of matrix elements of two-particle operators for many-electron atoms, Lith. J. Phys. 42(2), 73–86 (2002)
[28] C. Froese Fischer, M. Godefroid, T. Brage, P. Jönsson, and G. Gaigalas, Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions, J. Phys. B 49(18), 182004 (2016),
https://doi.org/10.1088/0953-4075/49/18/182004
[29] G. Gaigalas, A program library for computing pure spin-angular coefficients for one- and two-particle operators in relativistic atomic theory, Atoms 10(4), 129 (2022),
https://doi.org/10.3390/atoms10040129
[30] G. Gaigalas, O. Scharf, and S. Fritzsche, Maple procedures for the coupling of angular momenta. VIII. Spin-angular coefficients for single-shell configurations, Comput. Phys. Commun. 166(2), 141–169 (2005),
https://doi.org/10.1016/j.cpc.2004.11.003
[31] Y.T. Li, K. Wang, R. Si, M. Godefroid, G. Gaigalas, Ch.Y. Chen, and P. Jönsson, Reducing the computational load – atomic multiconfiguration calculations based on configuration state function generators, Comput. Phys. Commun. 283, 108562 (2023),
https://doi.org/10.1016/j.cpc.2022.108562
[32] L. Kitovienė, G. Gaigalas, P. Rynkun, M. Tanaka, and D. Kato, Theoretical investigation of the Ge isoelectronic sequence, J. Phys. Chem. Ref. Data 53, 033101 (2024),
https://doi.org/10.1063/5.0187307
[33] P. Rynkun, S. Banerjee, G. Gaigalas, M. Tanaka, L. Radžiūtė, and D. Kato, Theoretical investigation of energy levels and transition for Ce IV, A&A 658, A82 (2022),
https://doi.org/10.1051/0004-6361/202141513
[34] G. Gaigalas, P. Rynkun, S. Banerjee, M. Tanaka, D. Kato, and L. Radžiūtė, Theoretical investigation of energy levels and transition for Pr IV, MNRAS 517, 281 (2022),
https://doi.org/10.1093/mnras/stac2401
[35] R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, CA, USA, 1981),
https://doi.org/10.1525/9780520906150
[36] P. Jönsson, X. He, C. Froese Fischer, and I.P. Grant, The grasp2K relativistic atomic structure package, Comput. Phys. Commun. 177, 597–622 (2007),
https://doi.org/10.1016/j.cpc.2007.06.002