Emails: gediminas.gaigalas@tfai.vu.lt;
pavel.rynkun@tfai.vu.lt; laima.radziute@tfai.vu.lt
References /
Nuorodos
[1] P. Jönsson, G. Gaigalas, J. Bieroń, C. Froese Fischer, and
I.P. Grant, New version: G
RASP2K
relativistic atomic structure package, Comput. Phys. Commun.
184(9),
2197–2203 (2013),
https://doi.org/10.1016/j.cpc.2013.02.016
[2] C. Froese Fischer, G. Gaigalas, P. Jönsson, and J. Bieroń, G
RASP2018–A Fortran 95 version of the General
Relativistic Atomic Structure Package, Comput. Phys. Commun.
237,
184–187 (2019),
https://doi.org/10.1016/j.cpc.2018.10.032
[3] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order
Rayleigh–Schrödinger perturbation theory for the G
RASP2018 package: Core–valence correlations,
Lith. J. Phys.
64(1), 20–39 (2024),
https://doi.org/10.3952/physics.2024.64.1.3
[4] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order
Rayleigh–Schrödinger perturbation theory for the G
RASP2018 package: Core correlations, Lith. J.
Phys.
64(2), 73–81 (2024),
https://doi.org/10.3952/physics.2024.64.2.1
[5] G. Gaigalas, P. Rynkun, and L. Kitovienė, Second-order
Rayleigh–Schrödinger perturbation theory for the G
RASP2018 package: Core–core correlations,
Lith. J. Phys.
64(3), 139–161 (2024),
https://doi.org/10.3952/physics.2024.64.3.1
[6] P. Jönsson, M. Godefroid, G. Gaigalas, J. Ekman, J. Grumer,
W. Li, J. Li, T. Brage, I.P. Grant, J. Bieroń, and C. Froese
Fischer, An introduction to relativistic theory as implemented
in GRASP, Atoms
11(1), 7 (2023),
https://doi.org/10.3390/atoms11010007
[7] I. Lindgren and J. Morrison,
Atomic Many-body Theory
(Springer-Verlag Berlin Heidelberg, New York, 1982),
https://doi.org/10.1007/978-3-642-96614-9
[8] I. Hubač and S. Wilson,
Brillouin–Wigner Methods for
Many-body Systems (Springer Dordrecht Heidelberg London
New York, 2010),
https://doi.org/10.1007/978-90-481-3373-4
[9] S. Gustafsson, P. Jönsson, C. Froese Fischer, and I.P.
Grant, Combining multiconfiguration and perturbation methods:
perturbative estimates of core–core electron correlation
contributions to excitation energies in Mg-like iron, Atoms
5(1), 3 (2017),
https://doi.org/10.3390/atoms5010003
[10] G. Gaigalas, P. Rynkun, L. Radžiūtė, D. Kato, M. Tanaka,
and P. Jönsson, Energy level structure and transition data of Er
2+,
Astrophys. J. Suppl. Ser.
248, 13 (2020),
https://doi.org/10.3847/1538-4365/ab881a
[11] P. Jönsson, G. Gaigalas, Ch.F. Fischer, J. Bieroń, I.P.
Grant, T. Brage, J. Ekman, M. Godefroid, J. Grumer, J. Li, and
W. Li, G
RASP manual for users, Atoms
11(4),
68 (2023),
https://doi.org/10.3390/atoms11040068
[12] G. Merkelis, G. Gaigalas, and Z. Rudzikas, Irreducible
tensorial form of the effective Hamiltonian of an atom and the
diagrammatic representation in the first two orders of the
stationary perturbation theory, Liet. Fiz. Rink. (Sov. Phys.
Coll.)
25, 14–31 (1985) [in Russian]
[13] G. Merkelis, G. Gaigalas, J.G. Kaniauskas, and Z. Rudzikas,
Application of the graphical method of the angular momentum
theory to the study of the stationary perturbation series,
Izvest. Acad. Nauk SSSR, Phys. Coll.
50, 1403–1410
(1986) [in Russian]
[14] G. Gaigalas,
Irreducible Tensorial Form of the
Stationary Perturbation Theory for Atoms and Ions with Open
Shells, PhD Thesis (Institute of Physics, Vilnius, 1989)
[in Russian],
https://kolekcijos.biblioteka.vu.lt/en/objects/990007058341008452#00001
[15] G. Racah, Theory of complex spectra. I, Phys. Rev.
61,
186 (1942),
https://doi.org/10.1103/PhysRev.61.186
[16] G. Racah, Theory of complex spectra. II, Phys. Rev.
62,
438 (1942),
https://doi.org/10.1103/PhysRev.62.438
[17] G. Racah, Theory of complex spectra. III, Phys. Rev.
63,
367 (1943),
https://doi.org/10.1103/PhysRev.63.367
[18] G. Racah, Theory of complex spectra. IV, Phys. Rev.
76,
1352 (1949),
https://doi.org/10.1103/PhysRev.76.1352
[19] Z.B. Rudzikas,
Theoretical Atomic Spectroscopy
(Cambrige University Press, Cambridge, 1997),
https://doi.org/10.1017/CBO9780511524554
[20] Z.B. Rudzikas and J.M. Kaniauskas,
Quasispin and
Isospin in the Theory of Atom (Mokslas, Vilnius, 1984) [in
Russian]
[21] G. Gaigalas and Z. Rudzikas, On the secondly quantized
theory of the many-electron atom, J. Phys. B
29(15),
3303 (1996),
https://doi.org/10.1088/0953-4075/29/15/007
[22] G. Gaigalas, Z. Rudzikas, and C. Froese Fischer, An
efficient approach for spin-angular integrations in atomic
structure calculations, J. Phys. B
30(17), 3747 (1997),
https://doi.org/10.1088/0953-4075/30/17/006
[23] I.P. Grant,
Relativistic Quantum Theory of Atoms and
Molecules (Springer, New York, 2007),
https://doi.org/10.1007/978-0-387-35069-1
[24] P. Bogdanovich, G. Gaigalas, A. Momkauskaitė, and Z.
Rudzikas, Accounting for admixed configurations in the second
order of perturbation theory for complex atoms, Phys. Scr.
56(3),
230–239 (1997),
https://doi.org/10.1088/0031-8949/56/3/002
[25] P. Bogdanovich, G. Gaigalas, and A. Momkauskaitė,
Accounting for correlation corrections to interconfigurational
matrix elements, Lith. J. Phys.
38(5), 443–451 (1998)
[in Russian]
[26] C. Froese Fischer, T. Brage, and P. Jönsson,
Computational
Atomic Structure: An MCHF Approach (IoP, Bristol, UK,
1997),
https://doi.org/10.1201/9781315139982
[27] G. Gaigalas, The library of subroutines for calculation of
matrix elements of two-particle operators for many-electron
atoms, Lith. J. Phys.
42(2), 73–86 (2002)
[28] C. Froese Fischer, M. Godefroid, T. Brage, P. Jönsson, and
G. Gaigalas, Advanced multiconfiguration methods for complex
atoms: I. Energies and wave functions, J. Phys. B
49(18),
182004 (2016),
https://doi.org/10.1088/0953-4075/49/18/182004
[29] G. Gaigalas, A program library for computing pure
spin-angular coefficients for one- and two-particle operators in
relativistic atomic theory, Atoms
10(4), 129 (2022),
https://doi.org/10.3390/atoms10040129
[30] G. Gaigalas, O. Scharf, and S. Fritzsche, Maple procedures
for the coupling of angular momenta. VIII. Spin-angular
coefficients for single-shell configurations, Comput. Phys.
Commun.
166(2), 141–169 (2005),
https://doi.org/10.1016/j.cpc.2004.11.003
[31] Y.T. Li, K. Wang, R. Si, M. Godefroid, G. Gaigalas, Ch.Y.
Chen, and P. Jönsson, Reducing the computational load – atomic
multiconfiguration calculations based on configuration state
function generators, Comput. Phys. Commun.
283, 108562
(2023),
https://doi.org/10.1016/j.cpc.2022.108562
[32] L. Kitovienė, G. Gaigalas, P. Rynkun, M. Tanaka, and D.
Kato, Theoretical investigation of the Ge isoelectronic
sequence, J. Phys. Chem. Ref. Data
53, 033101 (2024),
https://doi.org/10.1063/5.0187307
[33] P. Rynkun, S. Banerjee, G. Gaigalas, M. Tanaka, L.
Radžiūtė, and D. Kato, Theoretical investigation of energy
levels and transition for Ce IV, A&A
658, A82
(2022),
https://doi.org/10.1051/0004-6361/202141513
[34] G. Gaigalas, P. Rynkun, S. Banerjee, M. Tanaka, D. Kato,
and L. Radžiūtė, Theoretical investigation of energy levels and
transition for Pr IV, MNRAS
517, 281 (2022),
https://doi.org/10.1093/mnras/stac2401
[35] R.D. Cowan,
The Theory of Atomic Structure and Spectra
(University of California Press, Berkeley, CA, USA, 1981),
https://doi.org/10.1525/9780520906150
[36] P. Jönsson, X. He, C. Froese Fischer, and I.P. Grant, The
grasp2K relativistic atomic structure package, Comput. Phys.
Commun.
177, 597–622 (2007),
https://doi.org/10.1016/j.cpc.2007.06.002