Lukas Stakėla, Kirill N. Alekseev, and Gintaras Valušis
References /
Nuorodos
[1] G. Valušis, A. Lisauskas, H. Yuan, W. Knap, and H.G. Roskos,
Roadmap of terahertz imaging 2021, Sensors
21, 4092
(2021),
https://doi.org/10.3390/s21124092
[2] Y. Huang, Y. Shen, and J. Wang, From terahertz imaging to
terahertz wireless communications, Engineering
22, 106
(2023),
https://doi.org/10.1016/j.eng.2022.06.023
[3] Z. Zhou, A. Kassem, J. Seddon, E. Sillekens, I. Darwazeh, P.
Bayvel, and Z. Liu, 938 Gb/s, 5-150 GHz ultra-wideband
transmission over the air using combined electronic and
photonic-assisted signal generation, J. Lightwave Technol.
42,
7247 (2024),
https://doi.org/10.1109/JLT.2024.3446827
[4] M. Asada and S. Suzuki, Terahertz emitter using
resonant-tunneling diode and applications, Sensors
21,
1384 (2021),
https://doi.org/10.3390/s21041384
[5] M.S. Vitiello and P. De Natale, Terahertz quantum cascade
lasers as enabling quantum technology, Adv. Quantum Tech.
5,
2100082 (2022),
https://doi.org/10.1002/qute.202100082
[6] L. Esaki and R. Tsu, Superlattice and negative differential
conductivity in semiconductors, IBM J. Res. Dev.
14, 61
(1970),
https://doi.org/10.1147/rd.141.0061
[7] E.L. Ivchenko and G.E. Pikus,
Superlattices and Other
Heterostructures: Symmetry and Optical Phenomena, Springer
Series in Solid-State Sciences Vol. 110 (Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997),
https://doi.org/10.1007/978-3-642-60650-2
[8] J. Feldmann, K. Leo, J. Shah, D.A.B. Miller, J.E.
Cunningham, T. Meier, G. Von Plessen, A. Schulze, P. Thomas, and
S. Schmitt-Rink, Optical investigation of Bloch oscillations in
a semiconductor superlattice, Phys. Rev. B
46, 7252
(1992),
https://doi.org/10.1103/PhysRevB.46.7252
[9] C. Waschke, H.G. Roskos, R. Schwedler, K. Leo, H. Kurz, and
K. Köhler, Coherent submillimeter-wave emission from Bloch
oscillations in a semiconductor superlattice, Phys. Rev. Lett.
70,
3319 (1993),
https://doi.org/10.1103/PhysRevLett.70.3319
[10] V.G. Lyssenko, G. Valušis, F. Löser, T. Hasche, K. Leo,
M.M. Dignam, and K. Köhler, Direct measurement of the spatial
displacement of Bloch-oscillating electrons in semiconductor
superlattices, Phys. Rev. Lett.
79, 301 (1997),
https://doi.org/10.1103/PhysRevLett.79.301
[11] K.F. Renk, B.I. Stahl, A. Rogl, T. Janzen, D.G. Pavel'ev,
Yu.I. Koshurinov, V. Ustinov, and A. Zhukov, Subterahertz
superlattice parametric oscillator, Phys. Rev. Lett.
95,
126801 (2005),
https://doi.org/10.1103/PhysRevLett.95.126801
[12] P.G. Savvidis, B. Kolasa, G. Lee, and S.J. Allen, Resonant
crossover of terahertz loss to the gain of a Bloch oscillating
InAs/AlSb superlattice, Phys. Rev. Lett.
92, 196802
(2004),
https://doi.org/10.1103/PhysRevLett.92.196802
[13] A. Lisauskas, C. Blöser, R. Sachs, H.G. Roskos, A.
Juozapavičius, G. Valušis, and K. Köhler, Time-resolved
photocurrent spectroscopy of the evolution of the electric field
in optically excited superlattices and the prospects for Bloch
gain, Appl. Phys. Lett.
86, 102103 (2005),
https://doi.org/10.1063/1.1867552
[14] T. Hyart, N.V. Alexeeva, J. Mattas, and K.N. Alekseev,
Terahertz Bloch oscillator with a modulated bias, Phys. Rev.
Lett.
102, 140405 (2009),
https://doi.org/10.1103/PhysRevLett.102.140405
[15] A. Wacker, Coexistence of gain and absorption, Nature Phys.
3, 298 (2007),
https://doi.org/10.1038/nphys603
[16] S.A. Ktitorov, G.S. Simin, and V.Y. Sindalovskii, Bragg
reflections and high-frequency conductivity of an electronic
solid-state plasma, Sov. Phys. Solid State
13, 1872
(1972)
[17] A.A. Ignatov and V.I. Shashkin, Bloch oscillations of
electrons and instability of space-charge waves in
superconductor superlattices, Sov. Phys. JETP
66, 526
(1987)
[PDF]
[18] F.G. Bass and A.P. Tetervov, High-frequency phenomena in
semiconductor superlattices, Phys. Rep.
140, 237 (1986),
https://doi.org/10.1016/0370-1573(86)90083-9
[19] E.E. Mendez, F. Agulló-Rueda, and J.M. Hong, Stark
localization in GaAs-GaAlAs superlattices under an electric
field, Phys. Rev. Lett.
60, 2426 (1988),
https://doi.org/10.1103/PhysRevLett.60.2426
[20] M. Dignam, J.E. Sipe, and J. Shah, Coherent excitations in
the Stark ladder: excitonic Bloch oscillations, Phys. Rev. B
49,
10502 (1994),
https://doi.org/10.1103/PhysRevB.49.10502
[21] V. Karpus,
Dvimačiai elektronai (Ciklonas, 2004),
[in Lithuanian]
[22] J. Pozhela,
Plasma and Current Instabilities in
Semiconductors: International Series on the Science of the
Solid State (Elsevier Science, Burlington, 1981),
https://shop.elsevier.com/books/plasma-and-current-instabilities-in-semiconductors/pozhela/978-0-08-025048-9
[23] P.L. Bhatnagar, E.P. Gross, and M. Krook, A model for
collision processes in gases. I. Small amplitude processes in
charged and neutral one-component systems, Phys. Rev.
94,
511 (1954),
https://doi.org/10.1103/PhysRev.94.511
[24] X.L. Lei, N.J.M. Horing, H.L. Cui, and K.K. Thornber,
One-dimensional confinement effects on miniband transport in a
semiconductor superlattice, Phys. Rev. B
48, 5366
(1993),
https://doi.org/10.1103/PhysRevB.48.5366
[25] A. Khalatpour, A.K. Paulsen, C. Deimert, Z.R. Wasilewski,
and Q. Hu, High-power portable terahertz laser systems, Nat.
Photonics
15, 16 (2021),
https://doi.org/10.1038/s41566-020-00707-5
[26] A.E. Seaver, An equation for charge decay valid in both
conductors and insulators,
https://arxiv.org/abs/0801.4182
https://doi.org/10.48550/arXiv.0801.4182
[27] H. Willenberg, G.H. Döhler, and J. Faist, Intersubband gain
in a Bloch oscillator and quantum cascade laser, Phys. Rev. B
67,
085315 (2003),
https://doi.org/10.1103/PhysRevB.67.085315
[28] H. Kroemer, Large-amplitude oscillation dynamics and domain
suppression in a superlattice Bloch oscillator,
https://arxiv.org/abs/cond-mat/0009311
https://doi.org/10.48550/arXiv.cond-mat/0009311
[29] T. Hyart, K.N. Alekseev, and E.V. Thuneberg, Bloch gain in
dc-ac-driven semiconductor superlattices in the absence of
electric domains, Phys. Rev. B
77, 165330 (2008),
https://doi.org/10.1103/PhysRevB.77.165330
[30] A.A. Ignatov, K.F. Renk, and E.P. Dodin, Esaki-Tsu
superlattice oscillator: Josephson-like dynamics of carriers,
Phys. Rev. Lett.
70, 1996 (1993),
https://doi.org/10.1103/PhysRevLett.70.1996
[31] N. Sekine and K. Hirakawa, Dispersive terahertz gain of a
nonclassical oscillator: Bloch oscillation in semiconductor
superlattices, Phys. Rev. Lett.
94, 057408 (2005),
https://doi.org/10.1103/PhysRevLett.94.057408
[32] R. Terazzi, T. Gresch, M. Giovannini, N. Hoyler, N. Sekine,
and J. Faist, Bloch gain in quantum cascade lasers, Nat. Phys.
3,
329 (2007),
https://doi.org/10.1038/nphys577
[33] V. Čižas, L. Subačius, N.V. Alexeeva, D. Seliuta, T. Hyart,
K. Köhler, K.N. Alekseev, and G. Valušis, Observation of the
dissipative parametric gain in a GaAs/AlGaAs superlattice, Phys.
Rev. Lett.
128, 236802 (2022),
https://doi.org/10.1103/PhysRevLett.128.236802
[34] T. Hyart, A.V. Shorokhov, and K.N. Alekseev, Theory of
parametric amplification in superlattices, Phys. Rev. Lett.
98,
220404 (2007),
https://doi.org/10.1103/PhysRevLett.98.220404
[35] V. Čižas, N. Alexeeva, K.N. Alekseev, and G. Valušis,
Coexistence of Bloch and parametric mechanisms of high-frequency
gain in doped superlattices, Nanomaterials
13, 1993
(2023),
https://doi.org/10.3390/nano13131993
[36] V. Čižas, N. Alexeeva, K. Alekseev, and G. Valušis,
Sum-frequency generation and amplification processes in
semiconductor superlattices, Lith. J. Phys.
63, 148
(2023),
https://doi.org/10.3952/physics.2023.63.3.5