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We present an overview of our very recent results on the evolution of ultrashort pulses after propagating through various
optical elements. Direct spatiotemporal measurements of the electric field were made using the technique SEA TADPOLE.
Our SEA TADPOLE device can resolve spatial features as small as ∼5 µm and temporal features as small as ∼5 fs. The
experimental results are verified by theoretical calculations. The superluminality of pulses with Bessel-function-like radial
profiles is discussed.
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1. Introduction

In 1987 Bessel light beams [1] were introduced and
now constitute a mature field with numerous applica-
tions (see review [2]). These beams are important be-
cause they possess a controversial quality: they are
“diffraction-free” and so preserve their tightly focused
central bright spot over large distances of propagation
as if the beam were not obeying the laws of diffrac-
tion. At the same time, quite independently, in math-
ematical physics, the topic of undistorted or localized
waves emerged, dealing with ultrabroadband pulses that
are not only “diffraction-free” in space but also prop-
agate without any spread in time [3–5]: “light bul-
lets” or “electromagnetic missiles.” To date, various
localized waves propagating in vacuum superluminally
(faster than the speed of light in vacuum), luminally, or
subluminally have been studied in detail, and promis-
ing applications have been proposed (see, e. g., reviews
[6–10] and the first monograph [11] on the field). The
feasibility of such light bullets moving faster than c
has been experimentally demonstrated more than once
[12–17], but, from time to time, papers still appear in
which the superluminal group velocity in vacuum of
such wave packets is questioned. Therefore, recently
[18] we accomplished, for the first time, with appropri-
ately high resolution and accuracy, a direct spatiotem-
poral measurement of the electric field and propagation

velocity of the simplest superluminal localized wave –
the so-called Bessel-X pulse [13], which comprises an
energy lump of a micrometre in diameter at the joint
apex of a sparse double-conical wave. In this paper, we
first present an overview of this result.

Secondly, we touch briefly on our spatiotemporal
measurements of accelerating and decelerating Bessel
pulses [19]. The term was proposed in [20] where
the generation and properties of such pulses were theo-
retically investigated. These pulses are similar to the
Bessel-X pulses, with the main difference being that
they are generated by crossing and interfering focusing
(or defocusing) pulses, which have curved pulse fronts
and form part of a spindle torus surface, rather than the
double conical surface of Bessel-X pulses. As a result,
their bullet-like, central, intense apex and accompany-
ing Bessel rings become smaller or larger as the pulse
propagates, depending on whether the torus shrinks to-
wards a ring or expands towards a sphere. But the cen-
tral spot of these pulses is still localized and intense over
a propagation distance considerably longer than that of
a Gaussian beam with a comparable waist size.

The third topic that we will discuss involves view-
ing simple, well-known cases of diffraction, but in the
time domain. The bending of light waves in the shadow
region behind an opaque disk and the appearance of
a bright “Spot of Arago” in the shadow centre are
well-known manifestations of diffraction. Tremendous
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progress was made in the mathematical treatment of
diffraction, resulting in the well developed theory with
Fresnel–Kirchhoff and Rayleigh–Sommerfeld versions
(see, e. g., monographs [21, 22] and references therein).
An alternative theory, inspired by the early ideas of
Thomas Young, has been developed by Maggi [23], Ru-
binowicz [24], Miyamoto, and Wolf (references given
in [22]). The boundary diffraction wave (BDW) the-
ory, as it was called, describes diffraction from open-
ings in opaque screens in a mathematically simple man-
ner. The BDW theory is especially intuitive when de-
scribing the formation of the diffracted field for the case
of illumination with ultrashort laser pulses.

Contrary to the traditional treatment using mono-
chromatic fields, in which the transmitted waves fill
large depths of space behind the screen and overlap
with each other there, ultrashort pulses – typically only
few micrometres “thick” – behave almost like a solitary
wave-front surface. Hence, the time-domain study of
diffraction in terms of pulsed BDWs is not only didac-
tically preferable but also opens new interesting direc-
tions and applications, such as in the study of focusing
and other transformations of ultrashort pulses (see, e. g.,
paper [25] and references therein). The formation of
an ultrashort boundary wave pulse just after a circular
aperture has been theoretically studied [26], and exper-
imental evidence for its existence was obtained by mea-
suring modulations in the spectrum of the on-axis field
as well as with CCD-recordings of the time-integrated
radial intensity distribution of the field [27]. Our aim
has been to directly record, with simultaneous spatial
and temporal resolution, the evolution and interference
of the boundary waves behind various screens. The re-
sults obtained are presented in the paper by Lõhmus et
al. which can be found in this issue, and here we con-
sider only the spot of Arago.

2. Spatiotemporal measurement of light fields

In our experiments we used a KM Labs Ti:Sa oscilla-
tor with 33 nm of bandwidth (FWHM) and an approx-
imately Gaussian spectrum with a central wavelength
λ0 = 805 nm. The spot size of the laser beam was
4 mm (FWHM). Our measurements not only required
high spatiotemporal resolution, but also high sensitiv-
ity. First of all, we routinely measure the relatively in-
tense, spatially uniform pulse directly out of our laser,
which is the input pulse in these experiments, and which
also acts as a reference pulse in the measurements, us-
ing the FROG technique [28]. To obtain ultrahigh spa-
tiotemporal resolution in both the intensity and phase,

in conjunction with the required sensitivity, we used a
technique called SEA TADPOLE (Spatially Encoded
Arrangement for Temporal Analysis by Dispersing a
Pair of Light E-fields [29]), which is based on spectral
interferometry. It involves measuring the spectrum of
the sum of the known reference pulse and the unknown
pulse to yield the unknown pulse’s temporal field. This
approach is much like monochromatic-beam spatial in-
terferometry or holography, where measurement of the
spatial intensity of the sum of a known spatial field and
an unknown monochromatic wave yields the unknown
wave field in space. Finally, we achieve the high spatial
resolution of the unknown field by simply scanning the
micrometre-sized tip of the SEA TADPOLE input fibre
point-by-point through the space where the unknown
light field propagates. SEA TADPOLE has demon-
strated a spatial resolution as small as 0.5 micrometres
by using near-field scanning optical microscopy fibre
tips, but 5 micrometres is sufficient for these measure-
ments, allowing the use of standard off-the-shelf fibres.
A description of the SEA TADPOLE set-up used can be
found in Refs. [18, 25] and in the paper by Lõhmus et al.
in the given issue. The plots from our SEA TADPOLE
measurements, which are shown below, can be viewed
as still images or “snapshots in flight,” since they are
spatiotemporal slices of the magnitude of the electric
field |E(x, y, z, t)| of the pulses.

3. Results on “diffraction-free” Bessel-X pulse

The most effective Bessel beam generator – a coni-
cal lens (axicon) – refracts plane waves towards its axis
and thus shapes a femtosecond pulse into the Bessel-X
pulse with its characteristic double-conical profile, as
shown in Fig. 1. If the aperture radius R of the axicon
were infinitely large, the pulse would propagate rigidly
and without any spread of its micrometre-size central
bright spot at the joint apex of the cones over an in-
finitely large distance. In the case of a limited aperture,
it follows from the geometry that the depth of the in-
variant propagation of the pulse (let us call it the Bessel
zone) is restricted to zB = R/tan θ, where θ (the so-
called axicon angle) is the angle of inclination of the
wave vectors of the constituent plane waves toward the
axis z.

Some measured “snapshots” of propagation of the
Bessel-X pulse are shown in Fig. 1, together with theo-
retical simulations (this time calculated as an axisym-
metric superposition of plane waves with a Gaussian
aperture). The two are in good agreement except that
the wings in the z = 5.5 cm image are shorter in the
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Fig. 1. Left: the measured field amplitude at three different distances (z) after the axicon. Right: the corresponding simulations. The
greyscale bar indicates the amplitude, and we have normalized each field to have a maximum of 1. The white bar on the time axis emphasizes
t = 0 relative to the reference pulse, which is where the pulse would be located if it were propagating at velocity c. The “thickness” of each

of the X-branches indicates the duration of the input (and reference) pulse.

measurement. This is because axicons are difficult to
machine perfectly; in particular, the tip of the cone is
always distorted, so the Bessel zone is shorter than what
would be expected in the ideal case.

There are several interesting features in these plots.
The central maximum of the pulse has a width of
∼20 µm, which – as well as the coaxial intensity rings
surrounding it – remains essentially unchanged in shape
from z = 5 cm through z = 13.5 cm. Thus the apex flies
rigidly as a light bullet together with its sparse wings at
constant speed. This is because the Bessel-X pulse is a
propagation-invariant conical wave. Also, the Bessel-
X pulse’s superluminal speed is apparent in these plots.
SEA TADPOLE measures the pulse’s arrival time with
respect to the reference pulse, which travels at the speed
of light (c). Therefore, if the Bessel-X pulse were trav-
elling at the speed of light, then at each z its spatiotem-
poral intensity would have the same centre on the time
axis (here t = 0 and emphasized with the white line),
but it is easy to see that this is not the case. From the axi-
con angle value θ = 0.92◦ (corresponds to our axicon’s
apex angle 176◦) as well as from the simulations, we
find that the Bessel-X pulse’s speed (axial group veloc-
ity) should be 1.00013c. From our experimental plots
we determined [18] it to be 1.00012c – within 0.001%
error of the expected value.

4. Results on accelerating and decelerating Bessel
pulses

In order to generate accelerating (or decelerating)
pulses we mounted a lens with focal length of+153 mm
(or −152 mm) before the axicon. All these results were
published in [19], and here we restrict ourselves to the
decelerating pulse case only.

The spatiotemporal profiles of the decelerating Bes-
sel pulse at nine positions were measured. In all cases,
we measured the complete spatiotemporal intensity and
phase, but we show only the spatiotemporal intensities
here, as this information is more interesting. Three of
these measurements for each case are shown in Fig. 2.
For comparison, numerical simulations were carried
out, and as seen in the figure, the two are in very good
agreement. The X-branching corresponding to the dou-
ble conical profile of the pulse is not seen because, due
to the lens and deceleration, the axicon angle θ is less
than in Fig. 1 and decreases with propagation distance.
Due to the negative lens the fronts of the pulses (and
phase fronts) obtain a curvature which decreases in the
course of propagation and therefore the axicon angle θ
on the axis also decreases – resulting in deceleration
of the movement of the strong interference field on the
axis, which is still in a good approximation nothing but
a Bessel-X pulse.

SEA TADPOLE measures the pulse’s arrival time
with respect to the reference pulse, the latter of which,
after passing through the compensating piece of glass,
travels at the speed of light c. The origin of our time
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Fig. 2. Comparison of the measured and calculated spatiotemporal profiles of the electric field amplitude of a decelerating Bessel pulse at
three positions along the propagation axis z.

Fig. 3. Experimentally determined group velocity of the deceler-
ating Bessel pulse as a function of the propagation distance. The

solid curve shows the theoretical function for comparison.

axis can be considered as the location of the reference
pulse if it propagated along the axis z with the Bessel
pulses. So, if the Bessel pulse were travelling at the
speed of light, then, for each value of z, its spatiotem-
poral intensity would be centred at the same time origin
t = 0 which is emphasized by the white bar in the fig-
ure. Again in Fig. 2, note that the superluminal group
velocity and the pulse’s deceleration are both apparent
from the z-dependent shifts of the pulses with respect
to the origin t = 0. The time shifts were used for cal-
culation of the pulse’s velocity at different propagation
distances (see Fig. 3). The decreasing superluminal ve-
locity manifests itself also in the increase of the fringe

spacing (increasing radial period of the Bessel profile;
see Fig. 2). Accelerating and decelerating Bessel pulses
can be also observed when tightly focusing an ultrashort
pulse by a lens with spherical aberration [25].

5. Spatiotemporally recorded diffraction

Here we consider formation of the Arago spot pulse
(for more results on diffraction of pulses through vari-
ous screens, see the paper by Lõhmus et al., also in this
issue).

We propagated ultrashort pulses past an opaque disk
of 4 mm diameter, making a hole in the beam, and we
measured the resulting spatiotemporal field at differ-
ent distances after the aperture to observe its evolution.
These measurements reveal the spatiotemporal struc-
ture of the weak boundary waves and the brighter spot at
the centre of the beam due to their constructive interfer-
ence, i. e., the spot of Arago, as it is known in conven-
tional diffraction theory for stationary (monochromatic)
fields. Interestingly, the plots (like the one in Fig. 4 for
a particular propagation distance) reveal that this spot is
surrounded by coaxial interference rings and, in the ax-
ial region the field, is identical to a decelerating Bessel
pulse, which we have considered in the previous sec-
tion. Moreover, the spot is delayed in time with respect
to the main pulse front, and this delay decreases with z,
indicating a superluminal propagation speed along the z
axis (the main pulse front propagates at c). This occurs,
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Fig. 4. Schematic of the experiment and the measured time-domain
formation of the Arago spot behind an opaque disk with radius
2 mm. Inset: measured electric field amplitude (actually square root
of it – |E|1/2 – for better contrast) 9 cm behind the disk. This mea-
surement reveals the weak boundary waves that originate from the
points along the perimeter of the disk. The boundary waves inter-
fere with the plane wave pulse or the part of the field coming from
radii greater than that of the disk, which propagates according to
the rules of geometrical optics. Constructive interference between
the expanding boundary waves produces a brighter superluminally
propagating spot on the axis. The strength of the field is shown “in
a negative colormap”, in which black corresponds to the maximum

strength.

because, as z (or the distance from the disk) increases,
the extra distance that the boundary waves must prop-
agate (compared to the main pulse front) to reach the
z axis (x = 0) decreases, so the relative delay of the
boundary waves and the bright spot due to their inter-
ference decreases. As a result, the group velocity of the
Arago spot – geometrically located at one pole of a lu-
minally expanding spindle torus formed by the bound-
ary diffraction wave pulse – varies from infinity at z =
0 to c for very large values of z. Therefore, the spot of
Arago is in fact just a decelerating Bessel pulse.

6. Discussion

The superluminality of the Bessel-X-type pulses is
intriguing. Indeed, while phase velocities greater than
c are well known in various fields of physics, a su-
perluminal group velocity is still somewhat taboo, be-
cause, at first glance, it seems to be in violation of rel-
ativistic causality. However, thanks to the numerous
studies throughout the previous century – starting from
Sommerfeld’s works on the propagation of plane wave
pulses in dispersive media – it is well known (see, e. g.,
a thorough review [30]) that the group velocity need

not be a physically profound quantity and by no means
should be confused with the signal propagation velocity
(which must be less than or equal to c in vacuum). But
in the case of Bessel-X-type pulsed waves, no disper-
sive medium is needed, and still not only is the group
velocity superluminal, but the pulse as a whole is also,
that is, it rigidly propagates faster than a plane wave.

Naturally, one may feel some unease in accepting this
startling circumstance. But here we experimentally ob-
serve it in the most direct way. When forced to concede
the theoretically and experimentally verified superlumi-
nality, one might feel the need to make recourse to state-
ments insisting that the pulse is not a “real” one, but
instead simply an interference pattern rebuilt at every
point of its propagation axis from truly real plane-wave
constituents travelling at a slight tilt with respect to the
axis. Such argumentation is not wrong but, alas, leads
nowhere. Of course, there is a similarity between the
superluminality of the X-wave and a simple geometrical
faster-than-light movement of the cutting point in scis-
sors (we refer here to Gedanken experiments described
in textbooks on relativity). But in the central highest-
energy part of the Bessel-X wave, there is nothing mov-
ing at the tilt angle. The phase planes are perpendicular
to the axis and move rigidly with the whole pulse along
the axis. The Poynting vector, indicating the direction
of energy flow, lies also along the axis. However, the
energy flux is not superluminal. Hence, to consider the
Bessel-X waves as something inferior to “real” waves is
not sound. If we thought so, by similar logic we would
arrive at the conclusion that femtosecond pulses emitted
by a mode-locked laser are not real but “simply an inter-
ference” between the continuous-wave laser modes. In
other words, one should not ignore the essence of the su-
perposition principle of linear fields, which implies a re-
versible relation between “resultant” and “constituent”
fields and in which no possible orthogonal bases – plane
waves or cylindrical (Bessel) waves, for the given exam-
ple – are inferior to any others.

Another misunderstanding (the author of the review
[30] seems to agree) stems from oversight of the fact
that there are infinitely many ways to form a pulsed ax-
isymmetric wave packet from single-frequency Bessel
beams. They depend on how the radial density of in-
tensity rings in the beam cross-section is related – or
whether or not it is related at all – to the beam’s tem-
poral frequency. In the case of the Bessel-X pulse,
this is a proportionality relation, and therefore the ax-
ial group velocity is perfectly defined with a single su-
perluminal value within the whole bandwidth of the
wave packet. If, on the contrary, the radial density is
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frequency-independent, we obtain a completely differ-
ent wave packet which is not a localized wave because
it has no definite group velocity over its whole spec-
trum and therefore spreads as it propagates. But such
a wave packet – named the ‘pulsed Bessel beam’ in
the literature – propagates with velocity less than c and
can be used for sending signals along the propagation
axis. On the other hand, if one tried to cut a signal
“notch” into the core of the Bessel-X pulse, the notch
would behave like the ‘pulsed Bessel beam’ – spread-
ing out while advancing subluminally. This is expected
since Maxwell’s equations, or the wave equation for EM
fields, do not allow superluminal signalling.

7. Conclusion

We have performed direct spatiotemporally resolved
measurements of pulsed light fields behind various op-
tical refracting and diffracting elements. We believe
that time-resolved measurements and a time-domain
treatment of diffracting waves not only turn out to be
fruitful in modern physical optics, especially in micro-
and meso-optics, but also promote the understanding of
diffraction phenomena.
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DIFRAGUOJANTYS IR NEDIFRAGUOJANTYS ŠVIESOS IMPULSAI ERDVĖJE IR LAIKE
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Santrauka
Pateikiame savo naujausių rezultatų apžvalgą apie ultratrumpųjų

impulsų, perėjusių įvairius optinius elementus, evoliuciją. Elektri-
nis laukas tiesiogiai matuotas erdvėje ir laike metodu, angliškoje li-
teratūroje vadinamu SEA TADPOLE. Mūsų SEA TADPOLE prie-

taisas registruoja net ∼5 µm smulkumo ir vos ∼5 fs trunkančius
pokyčius. Eksperimentiniai rezultatai patvirtinti teoriniais skaičia-
vimais. Aptartas impulsų, turinčių Beselio funkcijos pavidalo ra-
dialųjį pjūvį, virššviesinis pobūdis.


