[PDF]
http://dx.doi.org/10.3952/lithjphys.51106
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 51, 65–74 (2011)
CHARACTERIZATION OF AEROSOL
SOURCES AT URBAN AND BACKGROUND SITES IN LITHUANIA
K. Kvietkus a, J. Šakalys a I. Rimšelytė
a, J. Ovadnevaitė a, V. Remeikis a,
and V. Špakauskas b
a State Research Institute Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius,
Lithuania
E-mail: kvietkus@ktl.mii.lt
b Vilnius Gediminas Technical University,
Saulėtekio 11, LT-10223 Vilnius, Lithuania
Received 2 November 2010; revised
13 December 2010; accepted 17 March 2011
Size and composition real-time
measurements of atmospheric submicron aerosol (PM1) were conducted
in the Lithuanian background and urban areas during several months
(April–July, 2008) using the Quadrupole aerosol mass spectrometer
(QAMS). The average mass concentration of non-refractory PM1
ranged within 8–13 μg m−3. Organic compounds of
PM1 were the most abundant constituent ranging from 70 to 83%,
nitrate made up 4.0–7.7%, ammonium 1.7–3.9%, sulfate 11–21%, and
chloride less than 1%. While sulfate concentrations were
comparable at the urban and background sites, concentrations of
organic compounds and nitrate in Vilnius city were almost twice as
high as those at the background site (Rūgšteliškis). The average
aerodynamic diameter for nitrate and organics was about 300 nm at
both sampling sites – in Vilnius city and at Rūgšteliškis
background site. The average aerodynamic diameter for ammonium was
about 355 nm and for sulfate about 400 nm. The main source of
organics and nitrates in the city was emission from traffic,
however the main source of sulfates at urban and background sites
was long-range transport. Positive matrix factorization (PMF)
analysis of the unit mass-resolution (UMR) spectra was used to
identify sources of organic matter in the urban (Vilnius) and
background (Rūgšteliškis) aerosol. Organic aerosol components were
identified from AMS spectra for both sites: primary anthropogenic
emissions – hydrocarbonlike organic aerosol (HOA), aged
oxygenated low volatility organic aerosol (LV-OOA), and less
oxygenated, presumably, semivolatile organic aerosol (SV-OOA) at
the urban site (Vilnius city) as well as biomass burning organic
aerosol (BBOA), aged oxygenated low volatility organic aerosol
(LV-OOA), and semivolatile biogenic secondary organic aerosol
(SV-OOA) at the background site (Rūgšteliškis).
Keywords: atmospheric submicron aerosol,
urban and background sites, concentration, composition, size
distribution, sources
PACS: 92.60.Mt, 92.60.Sz, 92.20.Bk
AEROZOLIO DALELIŲ ŠALTINIŲ
APIBŪDINIMAS MIESTO IR FONINĖSE VIETOVĖSE LIETUVOJE
K. Kvietkus a, J. Šakalys a I. Rimšelytė
a, J. Ovadnevaitė a, V. Remeikis a,
V. Špakauskas b
a Valstybinis mokslinių tyrimų institutas Fizinių
ir technologijos mokslų centras, Vilnius, Lietuva
b Vilniaus Gedimino technikos universitetas,
Vilnius, Lietuva
Submikroninės frakcijos (PM1) atmosferinio
aerozolio dalelių pasiskirstymo pagal dydį ir cheminės sudėties
tyrimai realiame laike Vilniaus mieste ir Rūgšteliškio foninėje
vietovėje, naudojant kvadrupolinį aerozolio masės spektrometrą
(AMS), atlikti 2008 m. balandį–liepą. Vidutinė PM1 aerozolio
dalelių masės koncentracija kito nuo 8 iki 13 μg m−3.
Organinė PM1 aerozolio dalelių komponentė buvo vyraujanti ir kito
nuo 70 iki 83 %, nitratai sudarė 4,0–7,7 %, sulfatai – 11–21 %,
amonis – 1,7–3,9 %, chloridai – mažiau negu 1%. Sulfatų
koncentracijos buvo tos pačios eilės abiejose vietovėse, tuo tarpu
organinės komponentės ir nitratų koncentracijos aerozolio dalelėse
Vilniaus mieste buvo daugiau nei dvigubai didesnės. Vidutinis
organinės komponentės ir nitratų aerodinaminis aerozolio dalelių
skersmuo abiejose vietovėse buvo ~300 nm, amonio ~355 nm,
sulfatų ~400 nm. Pagrindinis organinės komponentės ir nitratų
šaltinis mieste buvo autotransportas, o sulfatų šaltinis ir
mieste, ir foninėje vietovėje – tolimoji oro masių pernaša.
Organinės medžiagos, esančios aerozolio dalelėse iš miesto
(Vilniaus) ir foninės vietovės (Rūgšteliškio), kilmei nustatyti
panaudotas teigiamos matricų faktorizacijos metodas, pritaikytas
vienetinės masės skyros spektrams. Vilniaus mieste iš AMS spektro
identifikuotos trys organinio aerozolio komponentės: pirminės
antropogeninės emisijos angliavandenilio dariniai (HOA), senesnės
oksidacijos mažai lakus (LV-OOA) ir mažai oksiduotas pusiau lakus
(SV-OOA) aerozoliai. Foninėje vietovėje (Rūgšteliškyje) aptiktas
biomasės degimo procese susidaręs organinis aerozolis (BBOA),
senesnės oksidacijos mažai lakus (LV-OOA) ir mažai oksiduotas
pusiau lakus (SV-OOA) aerozoliai.
References / Nuorodos
[1] P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W.
Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R.
Prinn, G. Raga, M. Schulz, and R. Van Dorland, in: Climate
Change 2007: The Physical Science Basis. Working Group I
Contribution to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, ed. S. Solomon, D.
Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and
H.L. Miller (Cambridge University Press, Cambridge, UK and New York,
NY, USA, 2007),
http://www.amazon.co.uk/gp/reader/0521705967/
[2] C.D. O’Dowd, M.C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea,
S. Decesari, S. Fuzzi, Y.J. Yoon, and J.-P. Putaud, Biogenically
driven organic contribution to marine aerosol, Nature 431,
676–680 (2004),
http://dx.doi.org/10.1038/nature02959
[3] D. Schwela, Air pollution and health in urban areas, Rev.
Environ. Health 15, 13–42 (2000)
[4] J. Ovadnevaitė, K. Kvietkus, and A. Maršalka, 2002 summer fires
in Lithuania: Impact on the Vilnius city air quality and the
inhabitants health, Sci. Total Environ. 356(1–3), 11–21
(2006),
http://dx.doi.org/10.1016/j.scitotenv.2005.04.013
[5] C.P. Chio and C.M. Liao, Assessment of atmospheric ultrafine
carbon particle-induced human health risk based on surface area
dosimetry, Atmos. Environ. 42, 8575–8584 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2008.08.027
[6] M. Lazaridis, A. Semb, S. Larssen, A.G. Hjellbrekke, O. Hov,
J.E. Hanssen, J. Schaug, and K. Torseth, Measurements of particulate
matter within the framework of the European Monitoring and
Evaluation Programme (EMEP), Sci. Total Environ. 285,
209–325 (2002),
http://dx.doi.org/10.1016/S0048-9697(01)00932-9
[7] T. Sandström, D. Nowak, and L. van Bree, Health effects of
coarse particles in ambient air: messages for research and
decision-making, Eur. Respir. J. 26, 187–188 (2005),
http://dx.doi.org/10.1183/09031936.05.00067205
[8] J. Ovadnevaite, K. Kvietkus, and J. Šakalys, Evaluation of the
impact of long-range transport and aerosol concentration temporal
variations at the eastern coast of the Baltic Sea, Environ. Monit.
Assess. 32(1–3), 365–375 (2007),
http://dx.doi.org/10.1007/s10661-006-9540-y
[9] D. Martuzevicius, S.A. Grinshpun, T. Reponen, R.L. Gorny, R.
Shukla, J. Lockey, S. Hu, R. McDonald, P. Biswas, L. Kliucininkas,
and G. LeMasters, Spatial and temporal variations of PM2.5
concentration and composition throughout an urban area with high
freeway density – the Greater Cincinnati Study, Atmos. Environ. 38,
1091–1105 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2003.11.015
[10] K. Slezakova, M.C. Pereira, M.A. Reis, and M.C. Alvim-Ferraz,
Influence of traffic emissions on the composition of atmospheric
particles of different sizes – Part 1: concentrations and elemental
characterization, J. Atmos. Chem. 58, 55–68 (2007),
http://dx.doi.org/10.1007/s10874-007-9078-6
[11] K. Slezakova, J.C.M. Pires, M.C. Pereira, F.G. Martins, and
M.C. Alvim-Ferraz, Influence of traffic emissions on the composition
of atmospheric particles of different sizes – Part 2: SEM-EDS
characterization, J. Atmos. Chem. 60, 221–236 (2008),
http://dx.doi.org/10.1007/s10874-008-9117-y
[12] M. Žičkus, K. Kvietkus, A. Maršalka, and V. Augulienė, An
investigation of meteorological effects on urban air quality using
carbon monoxide measurement results in the Vilnius city, Atmos.
Phys. 18(2), 11–20 (1996)
[13] J.-P. Putaud, F. Raes, R. Van Dingenen, E. Brüggemann, M.-C.
Facchini, S. Decesari, S. Fuzzi, R. Gehrig, C. Hüglin, P. Laj, G.
Lorbeer, W. Maenhaut, N. Mihalopoulos, K. Müller, X. Querol, S.
Rodriguez, J. Schneider, G. Spindler, H. ten Brink, K. Tørseth, and
A. Wiedensohler, A European aerosol phenomenology – 2: chemical
characteristics of particulate matter at kerbside, urban, rural and
background sites in Europe, Atmos. Environ. 38, 2579–2595
(2004),
http://dx.doi.org/10.1016/j.atmosenv.2004.01.041
[14] R. Van Dingenen, F. Raes, J. Putaud, U. Baltensperger, A.
Charron, M.-C. Facchini, S. Decesari, S. Fuzzi, R. Gehrig, H.
Hansson, R. Harrison, C. Huglin, A. Jones, P. Laj, G. Lorbeer, W.
Maenhaut, F. Palmgren, X. Querol, S. Rodriguez, J. Schneider, H. ten
Brink, P. Tunved, K. Tørseth, B. Wehner, E. Weingartner, A.
Wiedensohler, and P. Wåhlin, A European aerosol phenomenology – 1:
physical characteristics of particulate matter at kerbside, urban,
rural and background sites in Europe, Atmos. Environ. 38,
2561–2577 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2004.01.040
[15] M.R. Canagatatna, J.T. Jayne, J.L. Jimenez, J.D. Allan, M.R.
Alfarra, Q. Zhang, T.B. Onasch, F. Drewnick, H. Coe, A. Middlebrook,
A. Delia, L.R. Williams, A.M. Trimborn, M.J. Northway, P.F. DeCarlo,
C.E. Kolb, P. Davidovits, and D.R.Worsnop, Chemical and
microphysical characterization of ambient aerosols with the Aerodyne
aerosol mass spectrometer, Mass Spec. Rev. 26, 185–222
(2007),
http://dx.doi.org/10.1002/mas.20115
[16] J.D. Allan, M.R. Alfarra, K.N. Bower, H. Coe, J.T. Jayne, D.R.
Worsnop, P.P. Aalto, M. Kulmala, T. Hyötyläinen, F. Cavalli, and A.
Laaksonen, Size and composition measurements of background aerosol
and new particle growth in a finnish forest during QUEST 2 using an
aerodyne aerosol mass spectrometer, Atmos. Chem. Phys. 6,
315–327 (2006),
http://dx.doi.org/10.5194/acp-6-315-2006
[17] I. Rimšelytė, J. Ovadnevaitė, D. Čeburnis, K. Kvietkus, and E.
Pesliakaitė, Chemical composition and size distribution of fine
aerosol particles on the east coast of the Baltic Sea, Lith. J.
Phys. 47(4), 523–529 (2007),
http://dx.doi.org/10.3952/lithjphys.47425
[18] Y. Sun, Q. Zhang, A.M. Macdonald, K. Hayden, S.M. Li, J.
Liggio, P.S.K. Liu, K.G. Anlauf, W.R. Leaitch, A. Steffen, M.
Cubison, D.R. Worsnop, A. van Donkelaar, and R.V. Martin,
Size-resolved aerosol chemistry on Whistler Mountain, Canada
with a high-resolution aerosol mass spectrometer during
INTEX-B, Atmos. Chem. Phys. 9, 3095–3111 (2009),
http://dx.doi.org/10.5194/acp-9-3095-2009
[19] V.A. Lanz, A.S.H. Prévôt, M.R. Alfarra, C. Mohr, P.F. DeCarlo,
S. Weimer, M.D.F. Gianini, C. Hueglin, J. Schneider, O. Favez, B.D.
Anna, C. George, and U. Baltensperger, Characterization of aerosol
chemical composition by aerosol mass spectrometry in Central Europe:
an overview, Atmos. Chem. Phys. Discuss. 9, 24986–25021
(2009),
http://dx.doi.org/10.5194/acpd-9-24985-2009
[20] J. Ovadnevaite, D. Ceburnis, K. Plauskaite-Sukiene, R. Modini,
R. Dupuy, I. Rimselyte, M. Ramonet, K. Kvietkus, Z. Ristovski, H.
Berresheim, and C.D. O’Dowd, Volcanic sulphate and arctic dust
plumes over the North Atlantic Ocean, Atmos. Environ. 43(32),
4968–4974 (2009),
http://dx.doi.org/10.1016/j.atmosenv.2009.07.007
[21] Q. Zhang, M.R. Alfarra, D.R. Worsnop, J.D. Allan, H. Coe, M.R.
Canagaratna, and J.L. Jimenez, Deconvolution and quantification of
hydrocarbon-like and oxygenated organic aerosols based on aerosol
mass spectrometry, Environ. Sci. Technol. 39, 4938–4952,
(2005),
http://dx.doi.org/10.1021/es048568l
[22] Q. Zhang, J.L. Jimenez, M.R. Canagaratna, J.D. Allan, H. Coe,
I. Ulbrich, M.R. Alfarra, A. Takami, A.M. Middlebrook, Y.L. Sun, K.
Dzepina, E. Dunlea, K. Docherty, P.F. De-Carlo, D. Salcedo, T.
Onasch, J.T. Jayne, T. Miyoshi, A. Shimono, S. Hatakeyama, N.
Takegawa, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S.
Weimer, K. Demerjian, P. Williams, K. Bower, R. Bahreini, L.
Cottrell, R.J. Griffin, J. Rautiainen, J.Y. Sun, Y.M. Zhang, and
D.R.Worsnop, Ubiquity and dominance of oxygenated species in organic
aerosols in anthropogenically-influenced Northern Hemisphere
midlatitudes, Geophys. Res. Lett. 34, L13801, (2007),
http://dx.doi.org/10.1029/2007GL029979
[23] P. Paatero, Least squares formulation of robust nonnegative
factor analysis, Chemometr. Intell. Lab. Syst. 37, 23–35
(1997),
http://dx.doi.org/10.1016/S0169-7439(96)00044-5
[24] V.A. Lanz, M.R. Alfarra, U. Baltensperger, B. Buchmann, C.
Hueglin, and A.S.H. Prevot, Source apportionment of submicron
organic aerosols at an urban site by factor analytical modelling of
aerosol mass spectra, Atmos. Chem. Phys. 7, 1503–1522
(2007),
http://dx.doi.org/10.5194/acp-7-1503-2007
[25] K. Kvietkus, Air pollution tendencies in Vilnius city, Environ.
Chem. Phys. 21(3–4), 72–77 (1999)
[26] J.T. Jayne, D.C. Leard, X.F. Zhang, P. Davidovits, K.A. Smith,
C.E. Kolb, and D.R. Worsnop, Development of an aerosol mass
spectrometer for size and composition analysis of submicron
particles, Aerosol Sci. Technol. 33(1–2), 49–70 (2000),
http://dx.doi.org/10.1080/027868200410840
[27] J.L. Jimenez, J.T. Jayne, Q. Shi, C.E. Kolb, D.R. Worsnop, I.
Yourshaw, J.H. Seinfeld, R.C. Flagan, X. Zhang, K.A. Smith, J.W.
Morris, and P. Davidovits, Ambient aerosol sampling using the
Aerodyne Aerosol Mass Spectrometer, J. Geophys. Res. 108(D7),
8425 (2003),
http://dx.doi.org/10.1029/2001JD001213
[28] P. Paatero and U. Tapper, Positive matrix factorization – a
nonnegative factor model with optimal utilization of error-estimates
of data values, Environmetrics 5(2), 111–126 (1994),
http://dx.doi.org/10.1002/env.3170050203
[29] I.M. Ulbrich, M.R. Canagaratna, Q. Zhang, D.R. Worsnop, and
J.L. Jimenez, Interpretation of organic components from positive
matrix factorization of aerosol mass spectrometric data, Atmos.
Chem. Phys. 9, 2891–2918, (2009),
http://dx.doi.org/10.5194/acp-9-2891-2009
[30] R.R. Draxler and G.D. Hess, Description of the HYSPLIT_4
Modeling System, NOAA Technical Memorandum ERL ARL-224 (Air
Resources Laboratory, Silver Spring, Maryland, December 1997),
http://www.arl.noaa.gov/data/web/models/hysplit4/win95/arl-224.pdf
[31] M.R. Alfarra, H. Coe, J.D. Allan, K.N. Bower, H. Boudries, M.R.
Canagaratna, J.L. Jimenez, J.T. Jayne, A.A. Garforth, S.-M. Li, and
D.R.Worsnop, Characterization of urban and rural organic particulate
in the Lower Fraser Valley using two Aerodyne Aerosol Mass
Spectrometers, Atmos. Environ. 38, 5745–5758 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2004.01.054
[32] F.W. McLafferty and F. Turecek, Interpretation of Mass
Spectra, 4th ed. (University Science Books, Mill Valley,
California, 1993),
http://www.amazon.co.uk/gp/reader/0935702253/
[33] E. Dinar, T.F. Mentel, and Y. Rudich, The density of humic
acids and humic like substances (HULIS) from fresh and aged wood
burning and pollution aerosol particles, Atmos. Chem. Phys. 6,
5213–5224 (2006),
http://dx.doi.org/10.5194/acp-6-5213-2006
[34] C. Marcolli, M.R. Canagaratna, D.R. Worsnop, R. Bahreini, J.A.
de Gouw, C. Warneke, P.D. Goldan, W.C. Kuster, E.J.Williams, B.M.
Lerner, J.M. Roberts, J.F. Meagher, F.C. Fehsenfeld, M. Marchewka,
S.B. Bertman, and A.M. Middlebrook, Cluster analysis of the organic
peaks in bulk mass spectra obtained during the 2002 New England air
quality study with an Aerodyne aerosol mass spectrometer, Atmos.
Chem. Phys. 6, 5649–5666 (2006),
http://dx.doi.org/10.5194/acp-6-5649-2006