[PDF]     http://dx.doi.org/10.3952/lithjphys.52207

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 142164 (2012)


RESISTIVITY OF NON-GALILEAN-INVARIANT FERMI- AND NON-FERMI LIQUIDS
H.K. Pala, V.I. Yudsonb, and D.L. Maslova
aDepartment of Physics, University of Florida, Gainesville, FL 32611-8440, USA
E-mail: maslov@phys.ufl.edu
bInstitute for Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, 142190, Russia

Received 13 April 2012; accepted 7 June 2012

While it is well-known that the electron-electron (ee) interaction cannot affect the resistivity of a Galilean-invariant Fermi liquid (FL), the reverse statement is not necessarily true: the resistivity of a non-Galilean-invariant FL does not necessarily follow a T2 behavior. The T2 behavior is guaranteed only if Umklapp processes are allowed; however, if the Fermi surface (FS) is small or the electron-electron interaction is of a very long range, Umklapps are suppressed. In this case, a T2 term can result only from a combined – but distinct from quantum-interference corrections – effect of the electron-impurity and ee interactions. Whether the T2 term is present depends on (i) dimensionality [two dimensions (2D) vs three dimensions (3D)], (ii) topology (simply- vs multiply-connected), and (iii) shape (convex vs concave) of the FS. In particular, the T2 term is absent for any quadratic (but not necessarily isotropic) spectrum both in 2D and 3D. The T2 term is also absent for a convex and simply-connected but otherwise arbitrarily anisotropic FS in 2D. The origin of this nullification is approximate integrability of the electron motion on a 2D FS, where the energy and momentum conservation laws do not allow for current relaxation to leading – second – order in T/EF (EF is the Fermi energy). If the T2 term is nullified by the conservation law, the first non-zero term behaves as T4. The same applies to a quantum-critical metal in the vicinity of a Pomeranchuk instability, with a proviso that the leading (first non-zero) term in the resistivity scales as T(D+2)/3 (T(D+8)/3 ). We discuss a number of situations when integrability is weakly broken, e. g., by inter-plane hopping in a quasi-2D metal or by warping of the FS as in the surface states of topological insulators of the Bi2Te3 family. The paper is intended to be self-contained and pedagogical; review of the existing results is included along with the original ones wherever deemed necessary for completeness.
Keywords: normal-state electron transport, Fermi-liquid theory, quantum phase transitions
PACS: 71.10.Ay, 71.10.Hf, 73.20.-r


References / Nuorodos

[1] L.D. Landau and I.J. Pomeranchuk, Phys. Z. Sowjetunion 10, 649 (1936); Zh. Eksp. Teor. Fiz. 7, 379 (1937)
[2] A.A. Abrikosov, Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988),
http://www.amazon.co.uk/Fundamentals-Theory-Metals-Abrikosov/dp/0444870954/
[3] I.J. Pomeranchuk, Sov. Phys. JETP 8, 361 (1958)
[4] J. Bass, W.P. Pratt, and P. Schroeder, Rev. Mod. Phys. 62, 645 (1990),
http://dx.doi.org/10.1103/RevModPhys.62.645
[5] P.P. Debye and E.M. Conwell, Phys. Rev. 93, 693 (1954),
http://dx.doi.org/10.1103/PhysRev.93.693
[6] W.G. Baber, Proc. Roy. Soc. London 158, 383 (1937),
http://www.jstor.org/stable/96825,
http://dx.doi.org/10.1098/rspa.1937.0027
[7] V.F. Gantmakher and Y.B. Levinson, Carrier Scattering in Metals and Semiconductors (North-Holland, Amsterdam, 1987),
http://www.amazon.co.uk/Carrier-Scattering-Semiconductors-Problem-Condensed/dp/0444870253/
[8] J. Appel and A.W. Overhauser, Phys. Rev. B 18, 758 (1978),
http://dx.doi.org/10.1103/PhysRevB.18.758
[9] R.N. Gurzhi, A.I. Kopeliovich, and S.B. Rutkevich, JETP Lett. 32, 336 (1980),
http://www.jetpletters.ac.ru/ps/1427/article_21710.shtml
[10] R.N. Gurzhi, A.I. Kopeliovich, and S.B. Rutkevich, JETP 56, 159 (1982),
http://www.jetp.ac.ru/cgi-bin/e/index/e/56/1/p159?a=list
[11] R.N. Gurzhi, A.I. Kopeliovich, and S.B. Rutkevich, Adv. Phys. 36, 221 (1987),
http://dx.doi.org/10.1080/00018738700101002
[12] H. Maebashi and H. Fukuyama, J. Phys. Soc. Jpn. 66, 3577 (1997),
http://dx.doi.org/10.1143/JPSJ.66.3577
[13] H. Maebashi and H. Fukuyama, J. Phys. Soc. Jpn. 67, 242 (1998),
http://dx.doi.org/10.1143/JPSJ.67.242
[14] A. Rosch and P.C. Howell, Phys. Rev. B 72, 104510 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.104510
[15] A. Rosch, Ann. Phys. 15, 526 (2006),
http://dx.doi.org/10.1002/andp.200510203
[16] D.L. Maslov, V.I. Yudson, and A.V. Chubukov, Phys. Rev. Lett. 106, 106403 (2011),
http://dx.doi.org/10.1103/PhysRevLett.106.106403
[17] H.K. Pal, V.I. Yudson, and D.L. Maslov, Phys. Rev. B 85, 085439 (2012),
http://dx.doi.org/10.1103/PhysRevB.85.085439
[18] E. Fradkin, S.A. Kivelson, M.J. Lawler, J.P. Eisenstein, and A.P. Mackenzie, Annu. Rev. Cond. Matter Phys. 1, 153 (2010),
http://dx.doi.org/10.1146/annurev-conmatphys-070909-103925
[19] J.A. Hertz, Phys. Rev. B 14, 1165 (1976),
http://dx.doi.org/10.1103/PhysRevB.14.1165
[20] T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Spinger-Verlag, Berlin, New York, 1985),
http://www.amazon.co.uk/Fluctuations-Itinerant-Electron-Magnetism-Solid-State/dp/0387154221/
[21] A.J. Millis, Phys. Rev. B 48, 7183 (1993),
http://dx.doi.org/10.1103/PhysRevB.48.7183
[22] M. Dzero and L.P. Gor’kov, Phys. Rev. B 69, 092501 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.092501
[23] D.L. Maslov and A.V. Chubukov, Phys. Rev. B 79, 075112 (2009),
http://dx.doi.org/10.1103/PhysRevB.79.075112
[24] A.V. Chubukov, C. Pépin, and J. Rech, Phys. Rev. Lett. 92, 147003 (2004),
http://dx.doi.org/10.1103/PhysRevLett.92.147003
[25] J. Rech, C. Pépin, and A.V. Chubukov, Phys. Rev. B 74, 195126 (2006),
http://dx.doi.org/10.1103/PhysRevB.74.195126
[26] A.J. Schofield, Contemp. Phys. 40, 95 (1999),
http://dx.doi.org/10.1080/001075199181602
[27] L. Dell’Anna and W. Metzner, Phys. Rev. Lett. 98, 136402 (2007) [Phys. Rev. Lett. 103, 159904 (2009) (E)],
http://dx.doi.org/10.1103/PhysRevLett.98.136402
[28] F.M. Grosche, C. Pfleiderer, G.J. McMullan, G.G. Lonzarich, and N.R. Bernhoeft, Physica B 206–207, 20 (1995),
http://dx.doi.org/10.1016/0921-4526(94)00356-Z
[29] M. Nicklas, M. Brando, G. Knebel, F. Mayr,W. Trinkl, and A. Loidl, Phys. Rev. Lett. 82, 4268 (1999),
http://dx.doi.org/10.1103/PhysRevLett.82.4268
[30] P.G. Niklowitz, F. Beckers, G.G. Lonzarich, G. Knebel, B. Salce, J. Thomasson, N. Bernhoeft, D. Braithwaite, and J. Flouquet, Phys. Rev. B 72, 024424 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.024424
[31] E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics (Oxford, Pergamon Press, 1981),
http://www.amazon.co.uk/Physical-Kinetics-Course-Theoretical-Physics/dp/0750626356/
[32] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986),
http://dx.doi.org/10.1103/RevModPhys.58.323
[33] R.E. Prange and L.P. Kadanoff, Phys. Rev. 134, A566 (1964),
http://dx.doi.org/10.1103/PhysRev.134.A566
[34] See, e. g., M.J. Graf, D. Rainer, and J.A. Sauls, Phys. Rev. B 47, 12089 (1993),
http://dx.doi.org/10.1103/PhysRevB.47.12089
[35] S.-S. Lee, Phys. Rev. B 80, 165102 (2009),
http://dx.doi.org/10.1103/PhysRevB.80.165102
[36] M.A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010),
http://dx.doi.org/10.1103/PhysRevB.82.075127
[37] D.F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys. Rev. B 82, 045121 (2010),
http://dx.doi.org/10.1103/PhysRevB.82.045121
[38] A.V. Chubukov, Physics 3, 70 (2010),
http://dx.doi.org/10.1103/Physics.3.70
[39] B.I. Sturman, Sov. Phys.-Uspekhi 27, 881 (1984) [Usp. Fiz. Nauk 144, 497 (1984)],
http://dx.doi.org/10.1070/PU1984v027n11ABEH004122
[40] Since Ref. [39] is not widely available, we take a liberty to reproduce its main message here: Some sources quote a different form of Iei : Iei* = Σk' wk',k fk' (1 - fk) - wk,k' fk (1 - fk'). This form is incorrect: it does not follow from a microscopic theory and falsely predicts a possibility of non-linear evolution of the distribution function in a linear system. Under a more restrictive assumption of microreversibility, the nonlinear terms cancel out and Iei* becomes correct.
[41] Strictly speaking, the second term in the collision integral should contain the distribution function averaged over the directions of k rather than the equilibrium distribution nk. However, this difference is immaterial to linear order in E.
[42] M.D. Blokh and L.I. Magarill, Sov. Phys. Solid State 22, 1327 (1980) [Fiz. Tverd. Tela 22, 2279 (1980)].
[43] A well-known case when the resistivity is finite only due to normal ee collisions is a perfectly compensated semi-metal [7]. Undoped graphene is a special case of a compensated system with zero Fermi energy, where the conductivity is finite (and universal) at T = 0 even in the absence of any scattering [67, 68].
[44] S. Gangadharaiah, D.L. Maslov, A.V. Chubukov, and L.I. Glazman, Phys. Rev. Lett. 94, 156407 (2005),
http://dx.doi.org/10.1103/PhysRevLett.94.156407
[45] A.V. Chubukov, D.L. Maslov, S. Gangadharaiah, and L.I. Glazman, Phys. Rev. B 71, 205112 (2005),
http://dx.doi.org/10.1103/PhysRevB.71.205112
[46] A.O. Lyakhov and E.G. Mishchenko, Phys. Rev. B 67, 041304 (2003),
http://dx.doi.org/10.1103/PhysRevB.67.041304
[47] R.N. Gurzhi, A.N. Kalinenko, and A.I. Kopeliovich, Phys. Rev. B 52, 4744 (1995),
http://dx.doi.org/10.1103/PhysRevB.52.4744
[48] L. Fu, Phys. Rev. Lett. 103, 266801 (2009),
http://dx.doi.org/10.1103/PhysRevLett.103.266801
[49] More than two points of intersection may be possible for large momentum transfers of q near 2kF . However, this leads to higher order terms in Δ.
[50] C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956),
http://dx.doi.org/10.1103/PhysRev.101.944
[51] R. Keyes, J. Phys. Chem. Solids 6, 1 (1958),
http://dx.doi.org/10.1016/0022-3697(58)90211-7
[52] V.F. Gantmakher and Y.B. Levinson, JETP 47, 133 (1978),
http://www.jetp.ac.ru/cgi-bin/e/index/e/47/1/p133?a=list
[53] J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 2001),
http://dx.doi.org/10.1093/acprof:oso/9780198507796.001.0001
[54] B.L. Altshuler and A.G. Aronov, in: Electron-Electron Interactions in Disordered Systems, eds. A.L. Efros and M. Pollak (North-Holland, Amsterdam, 1985) p. 1
[55] G. Zala, B.N. Narozhny, and I.L. Aleiner, Phys. Rev. B 64, 214204 (2001),
http://dx.doi.org/10.1103/PhysRevB.64.214204
[56] I. Paul, C. Pépin, B.N. Narozhny , and D.L. Maslov, Phys. Rev. Lett. 95, 017206 (2005),
http://dx.doi.org/10.1103/PhysRevLett.95.017206
[57] I. Paul, Phys. Rev. B 77, 224418 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.224418
[58] B. Spivak, S.V. Kravchenko, S.A. Kivelson, and X.P.A. Gao, Rev. Mod. Phys. 82, 1743 (2010),
http://dx.doi.org/10.1103/RevModPhys.82.1743
[59] R.N. Gurzhi, Sov. Phys. JETP 17, 521 (1964)
[60] M. Hruska and B. Spivak, Phys. Rev. B 65, 033315 (2002),
http://dx.doi.org/10.1103/PhysRevB.65.033315
[61] L.D. Landau and E.M. Lifshits, Fluid Mechanics (Pergamon Press, Oxford, 1987),
http://www.amazon.co.uk/Fluid-Mechanics-Course-Theoretical-Physics/dp/0750627670/
[62] Ref. [31], p. 62
[63] R.S. Perry, L.M. Galvin, S.A. Grigera, L. Capogna, A.J. Schofield, A.P. Mackenzie, M. Chiao, S.R. Julian, S.I. Ikeda, S. Nakatsuji, Y. Maeno, and C. Pfleiderer, Phys. Rev. Lett. 86, 2661 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.2661
[64] S.A. Grigera, R.S. Perry, A.J. Schofield, M. Chiao, S.R. Julian, G.G. Lonzarich, S.I. Ikeda, Y. Maeno, A.J. Millis, and A.P. Mackenzie, Science 294, 329 (2001),
http://dx.doi.org/10.1126/science.1063539
[65] S.A. Grigera, P. Gegenwart, R.A. Borzi, F. Weickert, A.J. Schofield, R.S. Perry, T. Tayama, T. Sakakibara, Y. Maeno, A.G. Green, and A.P. Mackenzie, Science 306, 1154 (2004),
http://dx.doi.org/10.1126/science.1104306
[66] S.S. Murzin, S.I. Dorozhkin, G. Landwehr, and A.C. Gossard, JETP Lett. 67, 113 (1998),
http://dx.doi.org/10.1134/1.567643
[67] A.W.W. Ludwig, M.P.A. Fisher, R. Shankar, and G. Grinstein, Phys. Rev. B 50, 7526 (1994),
http://dx.doi.org/10.1103/PhysRevB.50.7526
[68] E.G. Mishchenko, Phys. Rev. Lett. 98, 216801 (2007),
http://dx.doi.org/10.1103/PhysRevLett.98.216801