[PDF]
http://dx.doi.org/10.3952/lithjphys.52207
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 52, 142–164 (2012)
RESISTIVITY
OF
NON-GALILEAN-INVARIANT FERMI- AND NON-FERMI LIQUIDS
H.K. Pala, V.I. Yudsonb, and D.L. Maslova
aDepartment of
Physics, University of Florida, Gainesville, FL 32611-8440, USA
E-mail: maslov@phys.ufl.edu
bInstitute for
Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow
Region, 142190, Russia
Received 13 April 2012; accepted 7 June 2012
While it is well-known that the
electron-electron (ee)
interaction cannot affect the resistivity of a Galilean-invariant
Fermi liquid (FL), the reverse statement is not necessarily true:
the resistivity of a non-Galilean-invariant FL does not
necessarily follow a T2
behavior. The T2
behavior is guaranteed only if Umklapp processes are allowed;
however, if the Fermi surface (FS) is small or the
electron-electron interaction is of a very long range, Umklapps
are suppressed. In this case, a T2
term can result only from a combined – but distinct from
quantum-interference corrections – effect of the electron-impurity
and ee interactions.
Whether the T2
term is present depends on (i) dimensionality [two dimensions (2D)
vs three dimensions (3D)], (ii) topology (simply- vs
multiply-connected), and (iii) shape (convex vs concave) of the
FS. In particular, the T2
term is absent for any quadratic (but not necessarily isotropic)
spectrum both in 2D and 3D. The T2
term is also absent for a convex and simply-connected but
otherwise arbitrarily anisotropic FS in 2D. The origin of this
nullification is approximate integrability of the electron motion
on a 2D FS, where the energy and momentum conservation laws do not
allow for current relaxation to leading – second – order in T/EF (EF is the Fermi
energy). If the T2
term is nullified by the conservation law, the first non-zero term
behaves as T4.
The same applies to a quantum-critical metal in the vicinity of a
Pomeranchuk instability, with a proviso that the leading (first
non-zero) term in the resistivity scales as T(D+2)/3
(T(D+8)/3
). We discuss a number of situations when integrability is weakly
broken, e. g., by inter-plane hopping in a quasi-2D metal or by
warping of the FS as in the surface states of topological
insulators of the Bi2Te3 family. The paper
is intended to be self-contained and pedagogical; review of the
existing results is included along with the original ones wherever
deemed necessary for completeness.
Keywords: normal-state
electron transport, Fermi-liquid theory, quantum phase transitions
PACS: 71.10.Ay, 71.10.Hf,
73.20.-r
References / Nuorodos
[1] L.D. Landau and I.J. Pomeranchuk, Phys. Z. Sowjetunion 10, 649 (1936); Zh. Eksp. Teor.
Fiz. 7, 379 (1937)
[2] A.A. Abrikosov, Fundamentals
of the Theory of Metals (North-Holland, Amsterdam, 1988),
http://www.amazon.co.uk/Fundamentals-Theory-Metals-Abrikosov/dp/0444870954/
[3] I.J. Pomeranchuk, Sov. Phys. JETP 8, 361 (1958)
[4] J. Bass, W.P. Pratt, and P. Schroeder, Rev. Mod. Phys. 62, 645 (1990),
http://dx.doi.org/10.1103/RevModPhys.62.645
[5] P.P. Debye and E.M. Conwell, Phys. Rev. 93, 693 (1954),
http://dx.doi.org/10.1103/PhysRev.93.693
[6] W.G. Baber, Proc. Roy. Soc. London 158, 383 (1937),
http://www.jstor.org/stable/96825,
http://dx.doi.org/10.1098/rspa.1937.0027
[7] V.F. Gantmakher and Y.B. Levinson, Carrier Scattering in Metals and Semiconductors
(North-Holland, Amsterdam, 1987),
http://www.amazon.co.uk/Carrier-Scattering-Semiconductors-Problem-Condensed/dp/0444870253/
[8] J. Appel and A.W. Overhauser, Phys. Rev. B 18, 758 (1978),
http://dx.doi.org/10.1103/PhysRevB.18.758
[9] R.N. Gurzhi, A.I. Kopeliovich, and S.B. Rutkevich, JETP Lett. 32, 336 (1980),
http://www.jetpletters.ac.ru/ps/1427/article_21710.shtml
[10] R.N. Gurzhi, A.I. Kopeliovich, and S.B. Rutkevich, JETP 56, 159 (1982),
http://www.jetp.ac.ru/cgi-bin/e/index/e/56/1/p159?a=list
[11] R.N. Gurzhi, A.I. Kopeliovich, and S.B. Rutkevich, Adv. Phys. 36, 221 (1987),
http://dx.doi.org/10.1080/00018738700101002
[12] H. Maebashi and H. Fukuyama, J. Phys. Soc. Jpn. 66, 3577 (1997),
http://dx.doi.org/10.1143/JPSJ.66.3577
[13] H. Maebashi and H. Fukuyama, J. Phys. Soc. Jpn. 67, 242 (1998),
http://dx.doi.org/10.1143/JPSJ.67.242
[14] A. Rosch and P.C. Howell, Phys. Rev. B 72, 104510 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.104510
[15] A. Rosch, Ann. Phys. 15,
526 (2006),
http://dx.doi.org/10.1002/andp.200510203
[16] D.L. Maslov, V.I. Yudson, and A.V. Chubukov, Phys. Rev. Lett. 106, 106403 (2011),
http://dx.doi.org/10.1103/PhysRevLett.106.106403
[17] H.K. Pal, V.I. Yudson, and D.L. Maslov, Phys. Rev. B 85, 085439 (2012),
http://dx.doi.org/10.1103/PhysRevB.85.085439
[18] E. Fradkin, S.A. Kivelson, M.J. Lawler, J.P. Eisenstein, and
A.P. Mackenzie, Annu. Rev. Cond. Matter Phys. 1, 153 (2010),
http://dx.doi.org/10.1146/annurev-conmatphys-070909-103925
[19] J.A. Hertz, Phys. Rev. B 14,
1165 (1976),
http://dx.doi.org/10.1103/PhysRevB.14.1165
[20] T. Moriya, Spin Fluctuations
in Itinerant Electron Magnetism (Spinger-Verlag, Berlin,
New York, 1985),
http://www.amazon.co.uk/Fluctuations-Itinerant-Electron-Magnetism-Solid-State/dp/0387154221/
[21] A.J. Millis, Phys. Rev. B 48,
7183 (1993),
http://dx.doi.org/10.1103/PhysRevB.48.7183
[22] M. Dzero and L.P. Gor’kov, Phys. Rev. B 69, 092501 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.092501
[23] D.L. Maslov and A.V. Chubukov, Phys. Rev. B 79, 075112 (2009),
http://dx.doi.org/10.1103/PhysRevB.79.075112
[24] A.V. Chubukov, C. Pépin, and J. Rech, Phys. Rev. Lett. 92, 147003 (2004),
http://dx.doi.org/10.1103/PhysRevLett.92.147003
[25] J. Rech, C. Pépin, and A.V. Chubukov, Phys. Rev. B 74, 195126 (2006),
http://dx.doi.org/10.1103/PhysRevB.74.195126
[26] A.J. Schofield, Contemp. Phys. 40, 95 (1999),
http://dx.doi.org/10.1080/001075199181602
[27] L. Dell’Anna and W. Metzner, Phys. Rev. Lett. 98, 136402 (2007) [Phys. Rev.
Lett. 103, 159904 (2009)
(E)],
http://dx.doi.org/10.1103/PhysRevLett.98.136402
[28] F.M. Grosche, C. Pfleiderer, G.J. McMullan, G.G. Lonzarich, and
N.R. Bernhoeft, Physica B 206–207,
20 (1995),
http://dx.doi.org/10.1016/0921-4526(94)00356-Z
[29] M. Nicklas, M. Brando, G. Knebel, F. Mayr,W. Trinkl, and A.
Loidl, Phys. Rev. Lett. 82,
4268 (1999),
http://dx.doi.org/10.1103/PhysRevLett.82.4268
[30] P.G. Niklowitz, F. Beckers, G.G. Lonzarich, G. Knebel, B.
Salce, J. Thomasson, N. Bernhoeft, D. Braithwaite, and J. Flouquet,
Phys. Rev. B 72, 024424
(2005),
http://dx.doi.org/10.1103/PhysRevB.72.024424
[31] E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics (Oxford, Pergamon Press, 1981),
http://www.amazon.co.uk/Physical-Kinetics-Course-Theoretical-Physics/dp/0750626356/
[32] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986),
http://dx.doi.org/10.1103/RevModPhys.58.323
[33] R.E. Prange and L.P. Kadanoff, Phys. Rev. 134, A566 (1964),
http://dx.doi.org/10.1103/PhysRev.134.A566
[34] See, e. g., M.J. Graf, D. Rainer, and J.A. Sauls, Phys. Rev. B
47, 12089 (1993),
http://dx.doi.org/10.1103/PhysRevB.47.12089
[35] S.-S. Lee, Phys. Rev. B 80,
165102 (2009),
http://dx.doi.org/10.1103/PhysRevB.80.165102
[36] M.A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010),
http://dx.doi.org/10.1103/PhysRevB.82.075127
[37] D.F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys. Rev. B 82, 045121 (2010),
http://dx.doi.org/10.1103/PhysRevB.82.045121
[38] A.V. Chubukov, Physics 3, 70
(2010),
http://dx.doi.org/10.1103/Physics.3.70
[39] B.I. Sturman, Sov. Phys.-Uspekhi 27, 881 (1984) [Usp. Fiz. Nauk 144, 497 (1984)],
http://dx.doi.org/10.1070/PU1984v027n11ABEH004122
[40] Since Ref. [39] is not widely available, we take a liberty to
reproduce its main message here: Some sources quote a different form
of Iei : Iei* = Σk' wk',k fk' (1 - fk) - wk,k' fk (1 - fk'). This form is incorrect: it does not
follow from a microscopic theory and falsely predicts a possibility
of non-linear evolution of the distribution function in a linear
system. Under a more restrictive assumption of microreversibility,
the nonlinear terms cancel out and Iei* becomes correct.
[41] Strictly speaking, the second term in the collision integral
should contain the distribution function averaged over the
directions of k rather than
the equilibrium distribution nk. However, this difference is
immaterial to linear order in E.
[42] M.D. Blokh and L.I. Magarill, Sov. Phys. Solid State 22, 1327 (1980) [Fiz. Tverd.
Tela 22, 2279 (1980)].
[43] A well-known case when the resistivity is finite only due to
normal ee collisions is a perfectly compensated semi-metal [7].
Undoped graphene is a special case of a compensated system with zero
Fermi energy, where the conductivity is finite (and universal) at T = 0 even in the absence of
any scattering [67, 68].
[44] S. Gangadharaiah, D.L. Maslov, A.V. Chubukov, and L.I. Glazman,
Phys. Rev. Lett. 94, 156407
(2005),
http://dx.doi.org/10.1103/PhysRevLett.94.156407
[45] A.V. Chubukov, D.L. Maslov, S. Gangadharaiah, and L.I. Glazman,
Phys. Rev. B 71, 205112
(2005),
http://dx.doi.org/10.1103/PhysRevB.71.205112
[46] A.O. Lyakhov and E.G. Mishchenko, Phys. Rev. B 67, 041304 (2003),
http://dx.doi.org/10.1103/PhysRevB.67.041304
[47] R.N. Gurzhi, A.N. Kalinenko, and A.I. Kopeliovich, Phys. Rev. B
52, 4744 (1995),
http://dx.doi.org/10.1103/PhysRevB.52.4744
[48] L. Fu, Phys. Rev. Lett. 103,
266801 (2009),
http://dx.doi.org/10.1103/PhysRevLett.103.266801
[49] More than two points of intersection may be possible for large
momentum transfers of q
near 2kF .
However, this leads to higher order terms in Δ.
[50] C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956),
http://dx.doi.org/10.1103/PhysRev.101.944
[51] R. Keyes, J. Phys. Chem. Solids 6, 1 (1958),
http://dx.doi.org/10.1016/0022-3697(58)90211-7
[52] V.F. Gantmakher and Y.B. Levinson, JETP 47, 133 (1978),
http://www.jetp.ac.ru/cgi-bin/e/index/e/47/1/p133?a=list
[53] J.M. Ziman, Electrons and
Phonons: The Theory of Transport Phenomena in Solids
(Oxford University Press, Oxford, 2001),
http://dx.doi.org/10.1093/acprof:oso/9780198507796.001.0001
[54] B.L. Altshuler and A.G. Aronov, in: Electron-Electron
Interactions in Disordered Systems, eds. A.L. Efros and M.
Pollak (North-Holland, Amsterdam, 1985) p. 1
[55] G. Zala, B.N. Narozhny, and I.L. Aleiner, Phys. Rev. B 64, 214204 (2001),
http://dx.doi.org/10.1103/PhysRevB.64.214204
[56] I. Paul, C. Pépin, B.N. Narozhny , and D.L. Maslov, Phys. Rev.
Lett. 95, 017206 (2005),
http://dx.doi.org/10.1103/PhysRevLett.95.017206
[57] I. Paul, Phys. Rev. B 77,
224418 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.224418
[58] B. Spivak, S.V. Kravchenko, S.A. Kivelson, and X.P.A. Gao, Rev.
Mod. Phys. 82, 1743 (2010),
http://dx.doi.org/10.1103/RevModPhys.82.1743
[59] R.N. Gurzhi, Sov. Phys. JETP 17,
521 (1964)
[60] M. Hruska and B. Spivak, Phys. Rev. B 65, 033315 (2002),
http://dx.doi.org/10.1103/PhysRevB.65.033315
[61] L.D. Landau and E.M. Lifshits, Fluid Mechanics (Pergamon Press, Oxford, 1987),
http://www.amazon.co.uk/Fluid-Mechanics-Course-Theoretical-Physics/dp/0750627670/
[62] Ref. [31], p. 62
[63] R.S. Perry, L.M. Galvin, S.A. Grigera, L. Capogna, A.J.
Schofield, A.P. Mackenzie, M. Chiao, S.R. Julian, S.I. Ikeda, S.
Nakatsuji, Y. Maeno, and C. Pfleiderer, Phys. Rev. Lett. 86, 2661 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.2661
[64] S.A. Grigera, R.S. Perry, A.J. Schofield, M. Chiao, S.R.
Julian, G.G. Lonzarich, S.I. Ikeda, Y. Maeno, A.J. Millis, and A.P.
Mackenzie, Science 294, 329
(2001),
http://dx.doi.org/10.1126/science.1063539
[65] S.A. Grigera, P. Gegenwart, R.A. Borzi, F. Weickert, A.J.
Schofield, R.S. Perry, T. Tayama, T. Sakakibara, Y. Maeno, A.G.
Green, and A.P. Mackenzie, Science 306,
1154 (2004),
http://dx.doi.org/10.1126/science.1104306
[66] S.S. Murzin, S.I. Dorozhkin, G. Landwehr, and A.C. Gossard,
JETP Lett. 67, 113 (1998),
http://dx.doi.org/10.1134/1.567643
[67] A.W.W. Ludwig, M.P.A. Fisher, R. Shankar, and G. Grinstein,
Phys. Rev. B 50, 7526
(1994),
http://dx.doi.org/10.1103/PhysRevB.50.7526
[68] E.G. Mishchenko, Phys. Rev. Lett. 98, 216801 (2007),
http://dx.doi.org/10.1103/PhysRevLett.98.216801