[PDF]    http://dx.doi.org/10.3952/lithjphys.53104

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 53, 4156 (2013)


FEMTOSECOND OPTICAL PARAMETRIC OSCILLATORS SYNCHRONOUSLY PUMPED BY Yb:KGW OSCILLATOR
K. Stankevičiūtėa, I. Pipinytėa, I. Stasevičius a,b, J. Vengelisa, G. Valiulisa, R. Grigonis b, M. Vengrisa, M. Bardauskasb, L. Giniūnas b,
O. Balachninaitea, R. C. Eckardtc, and V. Sirutkaitis a
aLaser Research Center, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
bLight Conversion Ltd, Saulėtekio 10, LT-10223 Vilnius, Lithuania
cGooch and Housego (Ohio), 676 Alpha Drive, Highland Hts, Ohio, 44143 U.S.A.
E-mail: karolina.stankeviciute@ff.vu.lt

Received 6 December 2012; accepted 20 December 2012

Three synchronously pumped optical parametric oscillators (SPOPO's) based on different nonlinear optical materials are used to show the viability of Yb:KGW lasers for generation of pump radiation. Periodically poled lithium niobate (PPLN) is a convenient nonlinear optical material to begin the investigation, and typical of PPLN interesting additional phenomena are observed. Optical parametric amplification proves to be a useful technique for establishing SPOPO operation in lithium triborate (LBO) and beta barium borate (BBO) with a lower gain than PPLN. Numerical modelling helps in the analysis of SPOPO performance and indicates possible directions for future development such as non-collinear propagation to mitigate group velocity differences. The compact construction and efficient operation of femtosecond Yb:KGW lasers provide a favourable source of pump radiation for SPOPO's in these preliminary investigations.
Keywords: nonlinear optics, optical parametric oscillator, synchronous pumping, femtosecond pulses, bichromatic emission, Yb:KGW laser
PACS: 42.65.Yj, 42.65.-k, 42.70.Mp


FEMTOSEKUNDINIAI OPTINIAI PARAMETRINIAI GENERATORIAI
SINCHRONIŠKAI KAUPINAMI Yb:KGV LAZERIU

K. Stankevičiūtėa, I. Pipinytėa, I. Stasevičius a,b, J. Vengelisa, G. Valiulisa, R. Grigonis b, M. Vengrisa, M. Bardauskasb, L. Giniūnas b,
O. Balachninaitea, R. C. Eckardtc, V. Sirutkaitis a
aVilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva
bUAB „Šviesos konversija“, Vilnius, Lietuva
c„Gooch and Housego“, Ohio, JAV

Pristatomi trijų optinių parametrinių generatorių – dviejų sinchroniškai kaupinamų antra Yb:KGV osciliatoriaus harmonika (515 nm) su BBO (beta bario borato) ir LBO (ličio triborato) kristalais ir vieno pirma harmonika (1030 nm) su LBO (periodiškai orientuoto ličio niobato) kristalu – pradiniai eksperimentiniai rezultatai. Kaupinimui buvo naudojami Pharos lazerio osciliatoriaus 100 fs trukmės impulsai su 4 W vidutine galia esant 1030 nm bangos ilgiui bei 2,4 W galia esant 515 nm bangos ilgiui. Buvo nustatytas stiprinimas, pasiekiamas vieno praėjimo per netiesinį kristalą metu. Esant maksimaliems intensyvumams BBO kristale stiprinimas buvo didesnis (siekė 80 %), palyginti su BBO kristalu (siekė 75 %). Didžiausias energijos keitimo efektyvumas (>25 %) pasiektas sinchroniškai kaupinamame optiniame parametriniame generatoriuje su BBO kristalu. Gautas mažas energijos keitimo efektyvumas sinchroniškai kaupinamame optiniame parametriniame generatoriuje su BBO kristalu susijęs su nepakankama optinių dangų, užgarintų ant kristalo paviršiaus, kokybe. Skaitmeniniu modeliavimu nustatyta, kad generacijai reikalinga naudoti didesnį nei 10 GW/cm2 ir 2 GW/cm2 kaupinimo intensyvumą (atitinkamai BBO ir LBO kristalų atveju).


References / Nuorodos

[1] K. Burneika, M. Ignatavičius, V. Kabelka, A. Piskarskas, and A. Stabinis, Parametric light amplification and oscillation in KDP with mode-locked pump, IEEE J. Quantum Electron. 8, 574 (1972),
http://dx.doi.org/10.1109/JQE.1972.1077077
[2] A. Dubietis, G. Jonušauskas, and A. Piskarskas, Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal, Opt. Commun. 88, 437–440 (1992),
http://dx.doi.org/10.1016/0030-4018(92)90070-8
[3] A. Dubietis, R. Danielius, G. Tamošauskas, and A. Piskarskas, Combining effect in a multiple-beam-pumped optical parametric amplifier, J. Opt. Soc. Am. B. 15(3), 1135–1138 (1998),
http://dx.doi.org/10.1364/JOSAB.15.001135
[4] M. Ebrahimzadeh, Parametric light generation, Phil. Trans. R. Soc. Lond. A 361, 2731–2750 (2003),
http://rsta.royalsocietypublishing.org/content/361/1813/2731.abstract
[5] G. Cerullo and S. De Silvestri, Ultrafast optical parametric amplifiers, Rev. Sci. Instrum. 74(1), 1–18 (2003),
http://dx.doi.org/10.1063/1.1523642
[6] G. Tamošauskas, A. Dubietis, G. Valiulis, and A. Piskarskas, Optical parametric amplifier pumped by two mutually incoherent laser beams, Appl. Phys. B 91, 305–307 (2008),
http://dx.doi.org/10.1007/s00340-008-2984-8
[7] D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers, J. Opt. 12, 1–13 (2010),
10.1088/2040-8978/12/1/013001
[8] A.S. Piskarskas, V. Smilgevichyus, and A. Umbrasas, Continuous parametric generation of picosecond light pulses, Sov. J. Quantum Electron. 18, 155–156 (1988)
[9] K.C. Burr, C.L. Tang, M.A. Arbore, and M.M. Fejer, High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate, Appl. Phys. Lett. 70(25), 3341–3343 (1997),
http://dx.doi.org/10.1063/1.119164
[10] X. Meng, J.-C. Diels, D. Kuehlke, R. Batchko, and R. Byer, Bidirectional, synchronously pumped, ring optical parametric oscillator, Opt. Lett. 26(5), 265–267 (2001),
http://dx.doi.org/10.1364/OL.26.000265
[11] X.P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W.W. R ühle, and H. Giessen, 1-GHz-repetition-rate femtosecond optical parametric oscillator, Appl. Phys. Lett. 80 (11), 1873–1875 (2002),
http://dx.doi.org/10.1063/1.1461870
[12] M. Ghotbi, A. Esteban-Martin, and M. Ebrahim-Zadeh, BiB3 O6 femtosecond optical parametric oscillator, Opt. Lett. 31(21), 3128–3130 (2006),
http://dx.doi.org/10.1364/OL.31.003128
[13] L. Tartara, Simple and versatile dual-signal wave optical parametric oscillator, Opt. Lett. 32(9), 1105–1107 (2007),
http://dx.doi.org/10.1364/OL.32.001105
[14] A. Esteban-Martin, O. Kokabee, K. Moutzouris, and M. Ebrahim-Zadeh, High-harmonic-repetition-rate, 1 GHz femtosecond optical parametric oscillator pumped by a 76 MHz Ti:sapphire laser, Opt. Lett. 34(4), 428–430 (2009),
http://dx.doi.org/10.1364/OL.34.000428
[15] M.W. Haakestad, H. Fonnum, G. Arisholm, E. Lippert, and K. Stenersen, Mid-infrared optical parametric oscillator synchronously pumped by an erbium-doped fiber laser, Opt. Express 18(24), 25379–25388 (2010),
http://dx.doi.org/10.1364/OE.18.025379
[16] F. Kienle, P.S. Teh, D. Lin, Sh. Alam, J.H.V. Price, D.C. Hanna, D.J. Richardson, and D.P. Shepherd, High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator, Opt. Express 20(7), 7008–7014 (2012),
http://dx.doi.org/10.1364/OE.20.007008
[17] T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate, Appl. Phys. B 76, 241–244 (2003),
http://dx.doi.org/10.1007/s00340-003-1100-3
[18] C. McGowan, D.T. Reid, Z.E. Penman, M. Ebrahimzadeh, W. Sibbett, and D.H. Jundt, Femtosecond optical parametric oscillator based on periodically poled lithium niobate, J. Opt. Soc. Am. B 15(2), 694–701 (1998),
http://dx.doi.org/10.1364/JOSAB.15.000694
[19] J. Sun, B.J.S. Gale, and D.T. Reid, Dual-color operation of a femtosecond optical parametric oscillator exhibiting stable relative carrier-envelope phase-slip frequencies, Opt. Lett. 31 (13), 2021–2023 (2006),
http://dx.doi.org/10.1364/OL.31.002021
[20] D.H. Jundt, Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate, Opt. Lett. 22(20), 1553–1555 (1997),
http://dx.doi.org/10.1364/OL.22.001553
[21] Xin Zhong, JiangFeng Zhu, BinBin Zhou, and ZhiYi Wei, Synchronously pumped femtosecond optical parametric oscillator at 1053 nm, Sci. China Ser. G-Phys. Mech. Astron. 52(8), 1187–1190 (2009),
http://dx.doi.org/10.1007/s11433-009-0160-8