K. Stankevičiūtė
, I. Pipinytė
, I. Stasevičius
, J. Vengelis
, G. Valiulis
, R. Grigonis
, M. Vengris
, M. Bardauskas
, L. Giniūnas
O. Balachninaite
, R. C. Eckardt
, and V. Sirutkaitis
Three synchronously pumped optical parametric
oscillators (SPOPO's) based on different nonlinear optical materials are used
to show the viability of Yb:KGW lasers for generation of pump radiation. Periodically
poled lithium niobate (PPLN) is a convenient nonlinear optical material to
begin the investigation, and typical of PPLN interesting additional phenomena
are observed. Optical parametric amplification proves to be a useful technique
for establishing SPOPO operation in lithium triborate (LBO) and beta barium
borate (BBO) with a lower gain than PPLN. Numerical modelling helps in the
analysis of SPOPO performance and indicates possible directions for future
development such as non-collinear propagation to mitigate group velocity
differences. The compact construction and efficient operation of femtosecond
Yb:KGW lasers provide a favourable source of pump radiation for SPOPO's in
these preliminary investigations.
Pristatomi trijų optinių parametrinių generatorių
– dviejų sinchroniškai kaupinamų antra Yb:KGV osciliatoriaus harmonika (515
nm) su BBO (beta bario borato) ir LBO (ličio triborato) kristalais ir vieno
pirma harmonika (1030 nm) su LBO (periodiškai orientuoto ličio niobato) kristalu
– pradiniai eksperimentiniai rezultatai. Kaupinimui buvo naudojami Pharos
lazerio osciliatoriaus 100 fs trukmės impulsai su 4 W vidutine galia esant
1030 nm bangos ilgiui bei 2,4 W galia esant 515 nm bangos ilgiui. Buvo nustatytas
stiprinimas, pasiekiamas vieno praėjimo per netiesinį kristalą metu. Esant
maksimaliems intensyvumams BBO kristale stiprinimas buvo didesnis (siekė 80
%), palyginti su BBO kristalu (siekė 75 %). Didžiausias energijos keitimo
efektyvumas (>25 %) pasiektas sinchroniškai kaupinamame optiniame parametriniame
generatoriuje su BBO kristalu. Gautas mažas energijos keitimo efektyvumas
sinchroniškai kaupinamame optiniame parametriniame generatoriuje su BBO kristalu
susijęs su nepakankama optinių dangų, užgarintų ant kristalo paviršiaus, kokybe.
Skaitmeniniu modeliavimu nustatyta, kad generacijai reikalinga naudoti didesnį
nei 10 GW/cm2 ir 2 GW/cm2 kaupinimo intensyvumą (atitinkamai
BBO ir LBO kristalų atveju).
References
/ Nuorodos
[1] K. Burneika, M. Ignatavičius, V. Kabelka, A. Piskarskas, and A. Stabinis,
Parametric light amplification and oscillation in KDP with mode-locked pump,
IEEE J. Quantum Electron.
8, 574
(1972),
http://dx.doi.org/10.1109/JQE.1972.1077077
[2] A. Dubietis, G. Jonušauskas, and A. Piskarskas, Powerful femtosecond
pulse generation by chirped and stretched pulse parametric amplification in
BBO crystal, Opt. Commun.
88, 437–440
(1992),
http://dx.doi.org/10.1016/0030-4018(92)90070-8
[3] A. Dubietis, R. Danielius, G. Tamošauskas, and A. Piskarskas, Combining
effect in a multiple-beam-pumped optical parametric amplifier, J. Opt. Soc.
Am. B.
15(3), 1135–1138 (1998),
http://dx.doi.org/10.1364/JOSAB.15.001135
[4] M. Ebrahimzadeh, Parametric light generation, Phil. Trans. R. Soc. Lond.
A
361, 2731–2750 (2003),
http://rsta.royalsocietypublishing.org/content/361/1813/2731.abstract
[5] G. Cerullo and S. De Silvestri, Ultrafast optical parametric amplifiers,
Rev. Sci. Instrum.
74(1), 1–18 (2003),
http://dx.doi.org/10.1063/1.1523642
[6] G. Tamošauskas, A. Dubietis, G. Valiulis, and A. Piskarskas, Optical
parametric amplifier pumped by two mutually incoherent laser beams, Appl.
Phys. B
91, 305–307 (2008),
http://dx.doi.org/10.1007/s00340-008-2984-8
[7] D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi,
S. De Silvestri, and G. Cerullo, Few-optical-cycle pulses tunable from the
visible to the mid-infrared by optical parametric amplifiers, J. Opt.
12, 1–13 (2010),
10.1088/2040-8978/12/1/013001
[8] A.S. Piskarskas, V. Smilgevichyus, and A. Umbrasas, Continuous parametric
generation of picosecond light pulses, Sov. J. Quantum Electron.
18, 155–156 (1988)
[9] K.C. Burr, C.L. Tang, M.A. Arbore, and M.M. Fejer, High-repetition-rate
femtosecond optical parametric oscillator based on periodically poled lithium
niobate, Appl. Phys. Lett.
70(25),
3341–3343 (1997),
http://dx.doi.org/10.1063/1.119164
[10] X. Meng, J.-C. Diels, D. Kuehlke, R. Batchko, and R. Byer, Bidirectional,
synchronously pumped, ring optical parametric oscillator, Opt. Lett.
26(5), 265–267 (2001),
http://dx.doi.org/10.1364/OL.26.000265
[11] X.P. Zhang, J. Hebling, A. Bartels, D. Nau, J. Kuhl, W.W. R
ühle, and H. Giessen, 1-GHz-repetition-rate femtosecond optical parametric
oscillator, Appl. Phys. Lett.
80
(11), 1873–1875 (2002),
http://dx.doi.org/10.1063/1.1461870
[12] M. Ghotbi, A. Esteban-Martin, and M. Ebrahim-Zadeh, BiB
3
O
6 femtosecond optical parametric oscillator, Opt. Lett.
31(21), 3128–3130 (2006),
http://dx.doi.org/10.1364/OL.31.003128
[13] L. Tartara, Simple and versatile dual-signal wave optical parametric
oscillator, Opt. Lett.
32(9), 1105–1107
(2007),
http://dx.doi.org/10.1364/OL.32.001105
[14] A. Esteban-Martin, O. Kokabee, K. Moutzouris, and M. Ebrahim-Zadeh,
High-harmonic-repetition-rate, 1 GHz femtosecond optical parametric oscillator
pumped by a 76 MHz Ti:sapphire laser, Opt. Lett.
34(4), 428–430 (2009),
http://dx.doi.org/10.1364/OL.34.000428
[15] M.W. Haakestad, H. Fonnum, G. Arisholm, E. Lippert, and K. Stenersen,
Mid-infrared optical parametric oscillator synchronously pumped by an erbium-doped
fiber laser, Opt. Express
18(24),
25379–25388 (2010),
http://dx.doi.org/10.1364/OE.18.025379
[16] F. Kienle, P.S. Teh, D. Lin, Sh. Alam, J.H.V. Price, D.C. Hanna, D.J.
Richardson, and D.P. Shepherd, High-power, high repetition-rate, green-pumped,
picosecond LBO optical parametric oscillator, Opt. Express
20(7), 7008–7014 (2012),
http://dx.doi.org/10.1364/OE.20.007008
[17] T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and
R. Wallenstein, Synchronously pumped femtosecond optical parametric oscillator
of congruent and stoichiometric MgO-doped periodically poled lithium niobate,
Appl. Phys. B
76, 241–244 (2003),
http://dx.doi.org/10.1007/s00340-003-1100-3
[18] C. McGowan, D.T. Reid, Z.E. Penman, M. Ebrahimzadeh, W. Sibbett, and
D.H. Jundt, Femtosecond optical parametric oscillator based on periodically
poled lithium niobate, J. Opt. Soc. Am. B
15(2), 694–701 (1998),
http://dx.doi.org/10.1364/JOSAB.15.000694
[19] J. Sun, B.J.S. Gale, and D.T. Reid, Dual-color operation of a femtosecond
optical parametric oscillator exhibiting stable relative carrier-envelope
phase-slip frequencies, Opt. Lett.
31
(13), 2021–2023 (2006),
http://dx.doi.org/10.1364/OL.31.002021
[20] D.H. Jundt, Temperature-dependent Sellmeier equation for the index of
refraction,
ne, in congruent
lithium niobate, Opt. Lett.
22(20),
1553–1555 (1997),
http://dx.doi.org/10.1364/OL.22.001553
[21] Xin Zhong, JiangFeng Zhu, BinBin Zhou, and ZhiYi Wei, Synchronously
pumped femtosecond optical parametric oscillator at 1053 nm, Sci. China Ser.
G-Phys. Mech. Astron.
52(8), 1187–1190
(2009),
http://dx.doi.org/10.1007/s11433-009-0160-8