A.F. Orliukas
, V. Venckutė
, J. Miškinis
,
V. Kazlauskienė
, D. Petrulionis
, T. Šalkus
,
A. Dindune
, Z. Kanepe
, J. Ronis
, A. Maneikis
, and A. Kežionis
References
/ Nuorodos
[1] G. Adachi, N. Imanaka, E. Sugimoto, Y. Sadaoka, N. Yasuda, T. Har,
and M. Nagata,
United
States Patent No. 4,985,317, Jan. 15, 1991
[2] P. Birke, F. Salam, S. Doring, and W. Weppner, A first approach to
a monolithic all solid state inorganic lithium battery, Solid State
Ionics
118, 149–157 (1999),
http://dx.doi.org/10.1016/S0167-2738(98)00462-7
[3] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G.-Y. Adachi,
Ionic conductivity of solid electrolytes based on lithium titanium
phosphate, J. Electrochem. Soc.
137,
1023–1027 (1990),
http://dx.doi:10.1149/1.2086597
[4] M.A. Subramanian, R. Subramanian, and A. Clearfield, Lithium ion
conductors in the system AB(IV)
2(PO
4)
3
(B = Ti, Zr and Hf), Solid State Ionics
18–19(1), 562–569 (1986),
http://dx.doi.org/10.1016/0167-2738(86)90179-7
[5] K. Arbi, J.M. Rojo, and J. Sanz, Lithium mobility in titanium based
Nasicon Li
1+xTi
2−xAl
x(PO
4)
3 and
LiTi
2−xZr
x(PO
4)
3
materials followed by NMR and impedance spectroscopy, J. Eur. Ceram.
Soc.
27, 4215–4218 (2007),
http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.118
[6] K. Arbi, M.G. Lazarraga, D. Ben Hassen Chehimi, M. Ayadi-Trabelsi,
J.M. Rojo, and J. Sanz, Lithium mobility in Li
1.2Ti
1.8R
0.2(PO
4)
3
compounds (R = Al, Ga, Sc, In) as followed by NMR and impedance
spectroscopy, Chem. Mater.
16,
255–262 (2004),
http://dx.doi.org/10.1021/cm030422i
[7] T. Šalkus, E. Kazakevičius, A. Kežionis, A. Dindune, A. Kanepe, J.
Ronis, J. Emery, A. Boulant, O. Bohnke, and A.F. Orliukas,
Peculiarities of ionic transport in Li
1.3Al
0.15Y
0.15Ti
1.7(PO
4)
3
ceramics, J. Phys. Cond. Matter
21(18),
185502 (2009),
http://dx.doi.org/10.1088/0953-8984/21/18/185502
[8] W. Paszkowicz, INDEXING – program for indexing powder patterns of
cubic, tetragonal, hexagonal and orthorhombic substances on personal
computers, J. Appl. Crystallogr.
22,
186–187 (1989),
http://dx.doi.org/10.1107/S0021889889099802
[9] A.F. Orliukas, T. Šalkus, A. Kežionis, A. Dindune, Z. Kanepe, J.
Ronis, V. Venckutė, V. Kazlauskienė, J. Miškinis, and A. Lukauskas,
Structure and broadband impedance spectroscopy of Li
1.3Al
yY
x−yTi
1.7(PO
4)
3
(
x = 0.3;
y = 0.1, 0.2) solid electrolyte
ceramics, Solid State Ionics
225,
620–625 (2012),
http://dx.doi.org/10.1016/j.ssi.2012.05.011
[10] A. Kežionis, P. Butvilas, T. Šalkus, S. Kazlauskas, D.
Petrulionis, T. Žukauskas, E. Kazakevičius, and A.F. Orliukas,
Four-electrode impedance spectrometer for investigation of solid ion
conductors, Rev. Sci. Instrum.
84,
013902 (2013),
http://dx.doi.org/10.1063/1.4774391
[11] A. Kežionis, E. Kazakevičius, T. Šalkus, and A. Orliukas,
Broadband high frequency impedance spectrometer with working
temperatures up to 1200 K, Solid State Ionics
188, 110–113 (2011),
http://dx.doi.org/10.1016/j.ssi.2010.09.034
[12] R. D. Shannon, Revised effective ionic radii and systematic
studies of interatomic distances in halides and chalcogenides, Acta
Crystallogr. A
32, 751–767
(1976),
http://dx.doi.org/10.1107/S0567739476001551
[13] Q.-H. Wu, J.-M. Xu, Q.-C. Zhuang, and S.-G. Sun, X-ray
photoelectron spectroscopy of LiM
0.05Mn
1.95O
4
(M = Ni, Fe and Ti), Solid State Ionics
177, 1483–1488 (2006),
http://dx.doi.org/10.1016/j.ssi.2006.06.020
[14] B.V.R. Chowdari, G.V. Subba Rao, and G.Y.H. Lee, XPS and ionic
conductivity studies on Li
2O–Al
2O
3–(TiO
2
or GeO
2)–P
2O
5 glass–ceramics, Solid
State Ionics
136–137,
1067–1075 (2000),
http://dx.doi.org/10.1016/S0167-2738(00)00500-2
[15] J.-Y. Luo, L.-J. Chen,Y.-J. Zhao, P. He, and Y.-Y. Xia, The effect
of oxygen vacancies on the structure and electrochemistry of LiTi
2(PO
4)
3
for lithium-ion batteries: A combined experimental and theoretical
study, J. Power Sources
194,
1075–1080 (2009),
http://dx.doi.org/10.1016/j.jpowsour.2009.06.050
[16] Q. Xu, D.P. Huang, W. Chen, H. Wang, B.-T. Wang, and R.-Z. Yuan,
X-ray photoelectron spectroscopy investigation on chemical states of
oxygen on surfaces of mixed electronic–ionic conducting
La0.6Sr0.4Co1−yFeyO3 ceramics, Appl. Sur. Sci.
228, 110–114 (2004),
http://dx.doi.org/10.1016/j.apsusc.2003.12.030
[17] T. Šalkus, A. Kežionis, V. Kazlauskienė, J. Miškinis, A. Dindune,
Z. Kanepe, J. Ronis, and A.F. Orliukas, Surface and impedance
spectroscopy studies of Li
2.8Sc
1.8−yY
yZr
0.2(PO
4)
3
(where
y = 0, 0.1) solid
electrolyte ceramics, Mater. Sci. Eng. B
172, 156–162 (2010),
http://dx.doi.org/10.1016/j.mseb.2010.05.002
[18] M.S. Bhuvaneswari, S. Selvasekarapandian, S. Fujihara, and S.
Koji, Structural, XPS and impedance analysis of Li
xCoVO
4 (
x = 0.8, 1.0, 1.2), Solid State
Ionics
177, 121–127 (2006),
http://dx.doi.org/10.1016/j.ssi.2005.09.011
[19] R. Sobiestianskas, A. Dindune, Z. Kanepe, J. Ronis, A. Kežionis,
E. Kazakevičius, and A. Orliukas, Electrical properties of Li
1+xY
yTi
2−y(PO
4)
3
(where
x,
y=0.3; 0.4) ceramics at high
frequencies, Mater. Sci. Eng., B
76,
184–192 (2000),
http://dx.doi.org/10.1016/S0921-5107(00)00437-2
[20] W. Bogusz, J.R. Dygas, F. Krok, A. Kezionis, R. Sobiestianskas, E.
Kazakevicius, and A. Orliukas, Electrical conductivity dispersion in
Co-doped NASICON samples, Phys. Status Solidi A
183, 323–330 (2001),
http://dx.doi.org/10.1002/1521-396X(200102)183:2<323::AIDPSSA323>3.0.CO;2-6
[21] M. Cretin and P. Fabry, Comparative study of lithium ion
conductors in the system Li
1+xAl
xA
2−xIV(PO
4)
3
with A
IV=Ti or Ge and 0≤
x≤0·7
for use as Li
+ sensitive membranes, J. Eur. Ceram. Soc.
19, 2931–2940 (1999),
http://dx.doi.org/10.1016/S0955-2219(99)00055-2
[22] M. Godickemeier, B. Michel, A. Orliukas, P. Bohac, K. Sasaki, L.
Gauckler, H. Heinrich, P. Schwander, G. Kostorz, H. Hofmann, and O.
Frei, Effect of intergranular glass films on the electrical
conductivity of 3Y-TZP, J. Mater. Res.
9(5),
1228–1240 (1994),
http://dx.doi.org/10.1557/JMR.1994.1228
[23] T. Šalkus, A. Dindune, Z. Kanepe, J. Ronis, A. Určinskas, A.
Kežionis, and A.F. Orliukas, Lithium ion conductors in the system Li
1+yGe
2−x−yTi
xAl
y(PO
4)
3
(
x = 0.1 ÷ 0.3,
y = 0.07 ÷ 0.21), Solid State
Ionics
178, 1282–1287 (2007),
http://dx.doi.org/10.1016/j.ssi.2007.07.002
[24] A.F. Orliukas, T. Šalkus, A. Dindune, Z. Kanepe, J. Ronis, A.
Určinskas, E. Kazakevičius, A. Kežionis, V. Kazlauskienė, and J.
Miškinis, Synthesis, structure and electrical properties of Li
1+x+ySc
xY
yTi
2−x−y(PO
4)
3
(
x = 0.15–0.3,
y = 0.01–0.15) ceramics, Solid
State Ionics
179, 159–163
(2008),
http://dx.doi.org/10.1016/j.ssi.2007.12.036
[25] A.F. Orliukas, A. Dindune, Z. Kanepe, J. Ronis, B. Bogdonas, and
A. Kežionis, Synthesis and peculiarities of electric properties of Li
1.3Zr
1.4Ti
0.3Al
0.3(PO
4)
3
solid electrolyte ceramics, Electrochim. Acta
51, 6194–6198 (2006),
http://dx.doi.org/10.1016/j.electacta.2005.11.049