[PDF]     http://dx.doi.org/10.3952/lithjphys.54112

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 5053 (2014)


NON-RESONANT TUNNELLING IN SHORT-PERIOD SUPERLATTICES WITH OPTICAL CAVITIES
M.S. Kagana, I.V. Altukhova, S.K. Paprotskiya , A.N. Baranovb, R. Teissierb, N.D. Il’inskaya c, A.A. Usikovac, A.D. Buravlevc, and V.M. Ustinov c
aKotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Mokhovaya 11-7, 125009 Moscow, Russia
E-mail: kagan@cplire.ru
bIES, Université Montpellier 2, CNRS, 34095 Montpellier Cedex 5, France
cIoffe Physical Technical Institute, Russian Academy of Sciences, Politekhnicheskaya 26, 194021 St. Petersburg, Russia

Received 18 November 2013; accepted 4 December 2013

The vertical transport in short-period InAs/AlSb and GaAs/AlAs superlattices was studied. The negative differential conductivity was observed in a miniband transport regime as a result of the overlapping of confined states in a periodic quantum well structure (Esaki-Tsu mechanism). Several maxima appeared on current–voltage characteristics of the superlattices found in the non-resonant tunnelling regime. They are shown to be due to the influence of the optical cavity on optical transitions within quantum wells (Purcell effect).
Keywords: superlattices, non-resonant tunnelling, optical cavities, Purcell effect
PACS: 73.21.Cd, 73.40.Gk, 73.61.Ey, 78.67.Pt


NEREZONANSINIS TUNELIAVIMAS TRUMPO PERIODO SUPERGARDELĖSE SU OPTINIAIS REZONATORIAIS
M.S. Kagana, I.V. Altukhova, S.K. Paprotskiya , A.N. Baranovb, R. Teissierb, N.D. Il’inskaya c, A.A. Usikovac, A.D. Buravlevc, V.M. Ustinov c
aRusijos mokslų akademijos Kotelnikovo Radijo ir elektronikos inžinerijos institutas, Maskva, Rusija
bMonpeljė II universitetas, Monpeljė, Prancūzija
cRusijos mokslų akademijos Jofės fizikos technikos institutas, Sankt Peterburgas, Rusija

References / Nuorodos

[1] J. Hoffmann, T. Lehnert, D. Hoffmann, and H. Fouckhardt, Semicond. Sci. Technol. 24, 065008 (2009),
http://dx.doi.org/10.1088/0268-1242/24/6/065008
 
[2] J. Guo, Z. Peng, W. Sun, Y. Xu, Z. Zhou, and Z. Niu, Infrared Phys. Technol. 52, 124 (2009),
http://dx.doi.org/10.1016/j.infrared.2009.04.003
 
[3] J.B. Rodriguez, E. Plis, G. Bishop, Y.D. Sharma, H.S. Kim, L.R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007),
http://dx.doi.org/10.1063/1.2760153
 
[4] L.L. Li, W. Xu, Z. Zeng, A.R. Wright, C. Zhang, J. Zhang, Y.L. Shi, and T.C. Lu, Microelectronics J. 40, 812 (2009),
http://dx.doi.org/10.1016/j.mejo.2008.11.046
 
[5] A.N. Baranov, N. Bertru, Y. Cuminal, G. Boissier, C. Alibert, and A. Joullié, Appl. Phys. Lett. 71, 735 (1997),
http://dx.doi.org/10.1063/1.119629
 
[6] A.A. Popov, V.V. Sherstnev, A.N. Baranov, C. Alibert, and Y.P. Yakovlev, Electronics Lett. 34, 1398 (1998),
http://dx.doi.org/10.1049/el:19980982
 
[7] J. Devenson, R. Teissier, O. Cathabard, and A.N. Baranov, Appl. Phys. Lett. 90, 111118 (2007),
http://dx.doi.org/10.1063/1.2714098
 
[8] T. Daoud, G. Boissier, J. Devenson, A.N. Baranov, and R. Teissier, J. Phys. Conf. Series 193, 012014 (2009),
http://dx.doi.org/10.1088/1742-6596/193/1/012014
 
[9] A. Wacker, Phys. Rep. 357, 1–111 (2002),
http://dx.doi.org/10.1016/S0370-1573(01)00029-1
 
[10] M. Büttiker and H. Thomas, Phys. Rev. Lett. 38, 78 (1977),
http://dx.doi.org/10.1103/PhysRevLett.38.78
 
[11] A.A. Ignatov and V.I. Shashkin, Zh. Eksp. Teor. Fiz. 93, 935 (1987) [Sov. Phys. JETP 66, 526 (1987)],
http://www.jetp.ac.ru/cgi-bin/e/index/e/66/3/p526?a=list
 
[12] F. Klappenberger, K.N. Alekseev, K.F. Renk, R. Scheuerer, E. Schomburg, S.J. Allen, G.R. Ramian, J.S.S. Scott, A. Kovsh, V. Ustinov, and A. Zhukov, Eur. Phys. J. B 39, 483 (2004),
http://dx.doi.org/10.1140/epjb/e2004-00221-y
 
[13] M.S. Kagan, I.V. Altukhov, A.N. Baranov, N.D. Il'inskaya, S.K. Paprotskiy, V.P. Sinis, R. Teissier, and A.A. Usikova, Acta Phys. Pol. A 119, 210 (2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-36.html
 
[14] L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970),
http://dx.doi.org/10.1147/rd.141.0061
 
[15] A.A. Andronov, E.P. Dodin, D.I. Zinchenko, and Yu.N. Nozdrin, Semiconductors 43, 228 (2009) [Fiz. Tekh. Poluprovodn. 43, 240 (2009)],
http://dx.doi.org/10.1134/S1063782609020213
 
[16] E.M. Purcell, Phys. Rev. 69, 681 (1946),
http://dx.doi.org/10.1103/PhysRev.69.37

[17] L. Tobing and P. Dumon, Fundamental principles of operation and notes on fabrication of photonic microresonators, in: Photonic Microresonator Research and Applications, Springer Series in Optical Sciences, Vol. 156 (2010), p. 1–27,
http://link.springer.com/chapter/10.1007%2F978-1-4419-1744-7_1