[PDF]
http://dx.doi.org/10.3952/lithjphys.52208
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 52, 165–179 (2012)
LUTTINGER
LIQUIDS
WITH MULTIPLE FERMI EDGES: GENERALIZED FISHER-HARTWIG CONJECTURE
AND NUMERICAL ANALYSIS OF TOEPLITZ DETERMINANTS
I.V. Protopopova,b, D.B. Gutmanc, and A.D.
Mirlina,d,e
aInstitut für
Nanotechnologie, Karlsruhe Institute of Technology, 76021
Karlsruhe, Germany
E-mail: alexander.mirlin@kit.edu
bL.D. Landau
Institute for Theoretical Physics RAS, 119334 Moscow, Russia
cDepartment of
Physics, Bar Ilan University, Ramat Gan 52900, Israel
dInstitut für Theorie
der kondensierten Materie and DFG Center for Functional
Nanostructures, Karlsruhe Institute of Technology, 76128
Karlsruhe, Germany
ePetersburg Nuclear
Physics Institute, 188300 St. Petersburg, Russia
Received 28 March 2012; accepted 7 June 2012
It has been shown that solutions
of a number of many-body problems out of equilibrium can be
expressed in terms of Toeplitz determinants with Fisher-Hartwig
(FH) singularities. In the present paper, such Toeplitz
determinants are studied numerically. Results of our numerical
calculations fully agree with the FH conjecture in an extended
form that includes a summation over all FH representations
(corresponding to different branches of the logarithms). As
specific applications, we consider problems of Fermi edge
singularity and tunneling spectroscopy of Luttinger liquid with
multiple-step energy distribution functions, including the case of
population inversion. In the energy representation, a sum over FH
branches produces power-law singularities at multiple edges.
Keywords: non-equilibrium,
many-body problems, Toeplitz determinants, Luttinger liquids,
Fermi-edge singularity, tunneling spectroscopy
PACS: 73.23.-b, 73.40.Gk,
73.50.Td
References / Nuorodos
[1] P.W. Anderson, Phys. Rev. Lett. 18, 1049 (1967),
http://dx.doi.org/10.1103/PhysRevLett.18.1049
[2] P. Nozières and C.T. De Dominicis, Phys. Rev. 178, 1097 (1969),
http://dx.doi.org/10.1103/PhysRev.178.1097
[3] S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950),
http://dx.doi.org/10.1143/PTP.5.544
[4] J.M. Luttinger, J. Math. Phys. 4,
1154 (1963),
http://dx.doi.org/10.1063/1.1704046
[5] D.C. Mattis and E.H. Lieb, J. Math. Phys. 6, 304 (1965),
http://dx.doi.org/10.1063/1.1704281
[6] A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974),
http://dx.doi.org/10.1103/PhysRevB.9.2911
[7] J. Kondo, Prog. Theor. Phys. 32,
37 (1964),
http://dx.doi.org/10.1143/PTP.32.37
[8] G. Yuval and P.W. Anderson, Phys. Rev. B 1, 1522 (1970),
http://dx.doi.org/10.1103/PhysRevB.1.1522
[9] E.H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963),
http://dx.doi.org/10.1103/PhysRev.130.1605
[10] E.H. Lieb, Phys. Rev. 130,
1616 (1963),
http://dx.doi.org/10.1103/PhysRev.130.1616
[11] V.E. Korepin, N.M. Bogoliubov, and A.G. Izergin, Quantum Inverse Scattering Method and
Correlation Functions (Cambridge University Press, 1993),
http://dx.doi.org/10.1017/CBO9780511628832
[12] D.B. Gutman, Y. Gefen, and A.D. Mirlin, Europhys. Lett. 90, 37003 (2010),
http://dx.doi.org/10.1209/0295-5075/90/37003
[13] D.B. Gutman, Y. Gefen, and A.D. Mirlin, Phys. Rev. B 81, 085436 (2010),
http://dx.doi.org/10.1103/PhysRevB.81.085436
[14] D.B. Gutman, Y. Gefen, and A.D. Mirlin, Phys. Rev. Lett. 105, 256802 (2010),
http://dx.doi.org/10.1103/PhysRevLett.105.256802
[15] D.B. Gutman, Y. Gefen, and A.D. Mirlin, J. Phys. A 44, 165003 (2011),
http://dx.doi.org/10.1088/1751-8113/44/16/165003
[16] Bosonization, ed. M.
Stone (World Scientific, 1994),
http://www.worldscibooks.com/physics/2436.html
[17] J. von Delft and H. Schoeller, Ann. Phys. 7, 225 (1998),
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
[18] A.O. Gogolin, A.A. Nersesyan, and A.M. Tsvelik, Bosonization
and Strongly Correlated Systems (Cambridge University
Press, Cambridge 1998),
http://www.cambridge.org/gb/knowledge/isbn/item1157633/
[19] T. Giamarchi, Quantum
Physics in One Dimension (Clarendon Press, Oxford, 2004),
http://ukcatalogue.oup.com/product/9780198525004.do
[20] D.L. Maslov, in: Nanophysics:
Coherence and Transport, eds. H. Bouchiat, Y. Gefen, G.
Montambaux, and J. Dalibard (Elsevier, 2005) p. 1,
http://dx.doi.org/10.1016/S0924-8099(05)80042-3
[21] M.E. Fisher and R.E. Hartwig, Toeplitz determinants: some
applications, theorems, and conjectures, in: Stohastic Processes in Chemical
Physics, Advances in Chemical Physics, Vol. 15, ed. K.E.
Schuler (John Wiley & Sons, 1969) p. 333,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470144009.html
[22] P. Deift, A. Its, and I. Krasovsky, Ann. Math. 174(2),
1243 (2011),
http://dx.doi.org/10.4007/annals.2011.174.2.12
[23] K.D. Schotte and U. Schotte, Phys. Rev. 182, 479 (1969),
http://dx.doi.org/10.1103/PhysRev.182.479
[24] D.A. Abanin and L.S. Levitov, Phys. Rev. Lett. 93, 126802 (2004),
http://dx.doi.org/10.1103/PhysRevLett.93.126802
[25] D.A. Abanin and L.S. Levitov, Phys. Rev. Lett. 94, 186803 (2005),
http://dx.doi.org/10.1103/PhysRevLett.94.186803
[26] Y.-F. Chen, T. Dirks, G. Al-Zoubi, N. Birge, and N. Mason,
Phys. Rev. Lett. 102,
036804 (2009),
http://dx.doi.org/10.1103/PhysRevLett.102.036804
[27] C. Altimiras, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly,
and F. Pierre, Nat. Phys. 6,
34 (2010),
http://dx.doi.org/10.1038/nphys1429
[28] S.G. Jakobs, V. Meden, and H. Schoeller, Phys. Rev. Lett. 99, 150603 (2007),
http://dx.doi.org/10.1103/PhysRevLett.99.150603
[29] D.B. Gutman, Y. Gefen, and A.D. Mirlin, Phys. Rev. Lett. 101, 126802 (2008),
http://dx.doi.org/10.1103/PhysRevLett.101.126802
[30] D.B. Gutman, Y. Gefen, and A.D. Mirlin, Phys. Rev. B 80, 045106 (2009),
http://dx.doi.org/10.1103/PhysRevB.80.045106
[31] M. Trushin and A.L. Chudnovskiy, Europhys. Lett. 82, 17008 (2008),
http://dx.doi.org/10.1209/0295-5075/82/17008
[32] S. Pugnetti, F. Dolcini, D. Bercioux, and H. Grabert, Phys.
Rev. B 79, 035121 (2009),
http://dx.doi.org/10.1103/PhysRevB.79.035121
[33] S. Ngo Dinh, D.A. Bagrets, and A.D. Mirlin, Phys. Rev. B 81, 081306 (R) (2010),
http://dx.doi.org/10.1103/PhysRevB.81.081306
[34] S. Takei, M. Milletarì, and B. Rosenow, Phys. Rev. B 82, 041306 (R) (2010),
http://dx.doi.org/10.1103/PhysRevB.82.041306
[35] C. Bena, Phys. Rev. B 82,
035312 (2010),
http://dx.doi.org/10.1103/PhysRevB.82.035312
[36] D.L. Maslov and M. Stone, Phys. Rev. B 52, R5539 (1995),
http://dx.doi.org/10.1103/PhysRevB.52.R5539
[37] I. Safi and H.J. Schulz, Phys. Rev. B 52, R17040 (1995),
http://dx.doi.org/10.1103/PhysRevB.52.R17040
[38] V.V. Ponomarenko, Phys. Rev. B 52, R8666 (1995),
http://dx.doi.org/10.1103/PhysRevB.52.R8666
[39] G. Szegö, Ein Grenzwertsatz über die Toeplitzschen
Determinanten einer reellen positiven Funktion, Mathematische
Annalen 76, 490 (1915),
http://dx.doi.org/10.1007/BF01458220
[40] G. Szegö, Orthogonal
Polynomials, AMS Colloquium Publ. Vol. 23 (AMS, New York,
1939)
[41] T. Ehrhardt, in: Recent
Advances in Operator Theory, Operator Theory: Adv. Appl.
Series Vol. 124 (Birkhäuser, 2001) p. 217,
http://www.springer.com/birkhauser/mathematics/book/978-3-7643-6573-8
[42] A.G. Abanov, D.A. Ivanov, and Y. Qian, J. Phys. A 44, 485001 (2011),
http://dx.doi.org/10.1088/1751-8113/44/48/485001
[43] D.A. Ivanov, A.G. Abanov, and V.V. Cheianov, arXiv:1112.2530
(2011),
http://lanl.arxiv.org/abs/1112.2530
[44] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Phys. Rev. Lett. 97, 246402 (2006),
http://dx.doi.org/10.1103/PhysRevLett.97.246402
[45] I.V. Protopopov, D.B. Gutman, and A.D. Mirlin, in preparation