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Magnetically generated spin-orbit coupling for ultracold atoms with slowly varying periodic driving
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The spin-orbit coupling (SOC) affecting the center of mass of ultracold atoms can be simulated using
a properly chosen periodic sequence of magnetic pulses. Yet such a method is generally accompanied by
micromotion, which hinders precise control of atomic dynamics, thus complicating practical applications. Here
we show how to bypass the micromotion emerging in the magnetically induced SOC by properly switching on
and off the oscillating magnetic fields at the initial and final times. We consider the exact dynamics of the system
and demonstrate that the overall dynamics can be immune to the micromotion. The exact dynamics is shown
to agree well with the evolution of the system described by the slowly changing effective Floquet Hamiltonian
including the SOC term. The agreement is shown to be best when the phase of the periodic driving takes a
specific value for which the effect of the spin-orbit coupling is maximum.
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I. INTRODUCTION

Spin-orbit coupling (SOC) manifests for electrons in solids
[1], where manipulation of electron spins by SOC plays an
important role in spintronics and quantum information pro-
cessing. During the past decade there has been also a great
deal of interest in SOC for ultracold atoms [2–9]. The SOC
can lead to novel many-body phases for ultracold atoms [6–8]
and offers applications in areas such as spintronics [10,11] and
precision measurements [12,13].

The SOC affecting the center of mass of ultracold atoms is
usually created by applying laser fields which induce transi-
tions between the atomic internal states accompanied by the
recoil [2–8]. This provides an effective coupling between the
atomic spin and linear momentum. Alternatively, the SOC can
be simulated by means of a properly chosen periodic sequence
of magnetic pulses [14,15], a method that has been imple-
mented for rubidium and sodium atoms [16,17]. Specifically,
by applying to ultracold atoms an oscillating magnetic field
with a spatial gradient and an additional pulsed magnetic field,
one can simulate an effective spin-orbit coupling similar to the
one induced by laser fields. The magnetic-based approach can
provide fast and flexible changes of the system parameters,
such as the recoil momentum. This can be useful for control-
ling and manipulating atomic spin states.

The SOC created by the oscillating magnetic field is gen-
erally accompanied by micromotion, which hinders precise
control of atomic dynamics and thus complicates applications.
These include a fundamental study of the generation of topo-
logical states [6,18,19], subwavelength lattices [20,21], and
nontrivial quantum correlations like spin squeezing [12,13,22]
or indirectly Bell correlations [23].

Here we show how to bypass the micromotion emerging in
the magnetically induced SOC by switching on and off prop-
erly the oscillating magnetic fields at the initial and final times.
We consider the exact dynamics of the system from the initial
to the final times and demonstrate that the overall dynamics

can be immune to the micromotion. Furthermore, the exact
dynamics agrees well with the evolution of the system de-
scribed by the slowly changing effective Floquet Hamiltonian
which contains the SOC term. The agreement is best when
the phase of the periodic driving takes a specific value for
which the effect of the spin-orbit coupling is maximum. In that
case, the first-order effective Floquet Hamiltonian vanishes
and the zeroth-order Floquet Hamiltonian is correct up to the
second-order expansion in the inverse powers of the driving
frequency. In this way, our results provide evidence that the
magnetically induced SOC can be generated in a controllable
way without involving micromotion.

The reduction of the micromotion effect opens the path
for the SOC implementation in systems where the Raman
coupling is difficult to apply, for example, for light atoms like
lithium for which the fine-structure splitting responsible for
the SOC is very small. In that case the Raman transitions
inducing the SOC should be very close to the excited-state
resonance in order to resolve the fine structure, which might
lead to significant losses. The magnetically generated SOC
does not rely on the fine-structure splitting and thus provides
a method for creating the SOC for a wide range of atoms
including the light ones.

II. FORMULATION

A. Hamiltonian

We consider spinful atoms affected by a time-dependent
inhomogeneous magnetic field. The atomic Hamiltonian can
then be separated into a spin-independent (SI) and a spin-
dependent (SD) part

H = HSI + HSD. (1)

The former SI contribution includes operators for kinetic
energy for the atomic motion in the z direction and SI po-
tential VSI(z), which can represent any SI potential, such as a

2469-9926/2024/109(5)/053319(8) 053319-1 ©2024 American Physical Society

https://orcid.org/0000-0001-5162-1112
https://orcid.org/0000-0002-8531-9744
https://orcid.org/0000-0001-8621-3063
https://orcid.org/0000-0002-0677-6446
https://ror.org/03nadee84
https://ror.org/000sfad56
https://ror.org/01dr6c206
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.053319&domain=pdf&date_stamp=2024-05-30
https://doi.org/10.1103/PhysRevA.109.053319


D. BURBA et al. PHYSICAL REVIEW A 109, 053319 (2024)

FIG. 1. Shape of the periodic functions α(s) and β(s).

parabolic trap or an optical lattice

HSI = p2
z

2m
+ VSI(z), (2)

where z and pz = −ih̄∂z are the atomic position and momen-
tum operators, respectively, and m is the atomic mass.

On the other hand, the SD terms reads

HSD = ω f (t )β(ωt )kβzSz + �ω0Sz + ωαg(t )α(ωt )Sx, (3)

where Su (with u = x, y, z) are the Cartesian components of
the spin operator S. The first term in Eq. (3) represents the
spin-dependent linear potential slope due to the inhomoge-
neous magnetic field along the z axis. It is characterized by
a slowly changing dimensionless amplitude f (t ) and a peri-
odic part β(ωt ) = β(ωt + 2π ) oscillating with a frequency
ω = 2π/T . As illustrated in Fig. 1, the latter function β(ωt )
is taken to be sinusoidal with a tunable phase θ0,

β(ωt ) = sin(ωt − θ0). (4)

The second term in Eq. (3) includes a possible detuning �ω0

between the neighboring spin projection states. The third term
is due to a pulsed Zeeman field oriented along the x axis. The
Zeeman term is characterized by a slowly changing dimen-
sionless amplitude g(t ) and a periodic part α(ωt ) = α(ωt +
2π ). The latter α(ωt ) has large nonzero values only for a short
temporal duration �T � T around multiple integers of the
driving period t = nT (see Fig. 1), where n is an integer, and
each peak is normalized to unity,

1

2π

∫ π

−π

α(s)ds = 1. (5)

For example, α(ωt ) can be composed of a series of square
potentials of a temporal width �T :

α(ωt ) =
{

1
ω�T , −�T

2 + nT � t < �T
2 + nT

0, �T
2 + nT � t < T − �T

2 + nT .
(6)

A specific condition regarding how short the Zeeman pulses
should be is presented in Appendix A 2. In writing Eq. (3)
we have introduced a wave number kβ and a Rabi frequency

ωα characterizing the strength of the gradient and Zeeman
fields, respectively. The spin-dependent Hamiltonian of the
form of Eq. (3) can be simulated using a setup which involves
an oscillating quadrupole magnetic, a strong bias magnetic
field along the quantization axis z, and an oscillating radio-
frequency magnetic field along the orthogonal (x) direction
(see the Supplemental Material of Ref. [17]).

In previous studies [16,17] the gradient and Zeeman field
were considered to have constant temporal profiles f (t ) =
g(t ) = 1. In that case the temporal evolution of the periodi-
cally driven quantum system is sensitive to the choice of the
initial and final times due to the micromotion [24–26]. To
avoid the effect of micromotion, here we introduce the slowly
changing amplitudes of the oscillating gradient and Zeeman
fields f (t ) and g(t ) which describe a smooth switching on
and off of these fields. By setting these amplitudes to zero
at the initial and final times, we demonstrate that the overall
dynamics of the periodically driven system is not sensitive to
the specific choice of the initial and final times and is well de-
scribed by the slowly changing effective Floquet Hamiltonian.

We consider the following timing of the Zeeman and the
gradient magnetic fields. Initially, both fields are zero: g(t ) =
f (t ) = 0 for t � tin. The amplitude f (t ) of the gradient field
is ramped up slowly from f (tin ) = 0 at the initial time tin
to a saturation value f (t ′

in ) = 1 at time t = t ′
in, as illustrated

schematically in Fig. 2. During the time interval tin < t < t ′
in

the amplitude g(t ) of the pulsed Zeeman field remains zero
and is ramped up during the next time interval t ′

in < t < t ′′
in

after the saturation of f (t ) is reached, as one can see in
Fig. 2. The amplitudes are constant f (t ) = g(t ) = 1 for t ′′

in <

t < t ′′
fn and subsequently are ramped down in the opposite

order. Specifically, the amplitude g(t ) is ramped down first
at t ′′

fn < t < t ′
fn and finally the amplitude f (t ) goes to zero

at t ′
fn < t < tfn, as illustrated in Fig. 2. The implications of

such a timing for the ramping up and down of the periodic
perturbation are discussed next.

B. Elimination of the spin-dependent potential slope

The multiplier ω in the first term of Eq. (3) reflects the
fact that by increasing the driving frequency the amplitude of
inhomogeneous magnetic field is also increased. On the other
hand, we are interested in the high-frequency limit where the
frequency of the periodic driving ω exceeds all other charac-
teristic frequencies featured in the Hamiltonian. This is not the
case for the spin-dependent potential slope ω f (t )β(ωt )kβzSz,
so this term will be eliminated in the Hamiltonian (3) via a
time-dependent unitary transformation

Ũz(t ) = exp

(
− i

z

h̄
kβSzγ (t )

)
, (7)

where

γ (t ) = ω

∫ t

tin

f (t1)β(ωt1)dt1. (8)

Here the lower integration limit is taken to be the initial time
tin, so that

γ (tin ) = 0, Ũz(tin ) = 1. (9)
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FIG. 2. Schematic representation of the switching on and off of the slowly varying amplitudes f (t ) and g(t ) of the gradient and Zeeman
fields represented by blue solid and red dashed lines, respectively.

Thus the original and transformed representations coincide at
the initial time t = tin. Both representations coincide also at
the final time tfn provided f (t ) is a smooth function changing
little within the driving period T = 2π/ω. Indeed, in that
case the function γ (t ) ≡ γ (ωt, t ) can be expanded as (see
Appendix A 1)

γ (ωt, t ) = − f (t ) cos(ωt − θ0) + f ′(t )

ω
sin(ωt − θ0)

+ f ′′(t )

ω2
cos(ωt − θ0) + · · · , (10)

so, using f (tfn ) = f ′(tfn ) = f ′′(tfn ) = · · · = 0, one finds that

γ (tfn ) = 0, Ũz(tfn ) = 1. (11)

As the amplitude f (t ) changes little within the driving pe-
riod [ f ′(t )/ω � f (t ), f ′′(t )/ω � f ′(t ), etc.], for the present
purposes it is sufficient to keep only the zeroth-order term in
Eq. (10), giving

γ (ωt, t ) ≈ − f (t ) cos(ωt − θ0). (12)

The transformed Hamiltonian H̃ (t ) = Ũ †
z HŨz − ih̄Ũ †

z ∂tŨz

reads

H̃ (ωt, t ) = HSI − pzkβ

m
Szγ (ωt, t ) + ωαg(t )α(ωt )S̃x (z, ωt, t )

+ k2
β

2m
S2

z γ
2(ωt, t ), (13)

where the transformed spin operator S̃x(z, t ) = Ũ †
z SxŨz de-

scribes spin rotation around the z axis:

S̃x(z, ωt, t ) = cos[zkβγ (ωt, t )]Sx − sin[zkβγ (ωt, t )]Sy.

(14)

The periodic function α(ωt ) multiplying S̃x(z, t ) in the
Hamiltonian of Eq. (13) is nonzero only in a narrow vicinity of
multiple integers of the driving period T = 2π/ω. Therefore,
one can replace γ (t ) ≡ γ (ωt, t ) by γ (0, t ) = − f (t ) cos θ0 in
Eq. (14) for S̃x(z, t ) (see Appendix A 2 for estimating an
error). Furthermore, since the function f (t ) reaches its sat-
uration value f (t ) = 1 when g(t ) is still zero, one can set
f (t ) = 1 in γ (0, t ) entering S̃x(z, t ), so that one can make the
following replacement in the Hamiltonian of Eq. (13):

S̃x(z, ωt, t ) → S̃x(z, t ) (15)

with

S̃x(z, t ) = cos(zkβ cos θ0)Sx + sin(zkβ cos θ0)Sy. (16)

The amount of spin rotation is thus determined by the the wave
number kβ cos θ0 times the distance z.

III. EXACT AND EFFECTIVE EVOLUTION

A. Effective Floquet Hamiltonian

In the original Hamiltonian given by Eqs. (1)–(3) the pe-
riodic perturbation represents the spin-dependent potential
slope ω f (t )β(ωt )kβzSz proportional to ω. In the transformed
Hamiltonian H̃ (ωt, t ) given by Eq. (13) this term is eliminated
and the oscillating perturbation is no longer proportional to
the driving frequency ω. The atomic dynamics can then be
well described in terms of a slowly changing effective Floquet
Hamiltonian Heff (t ) which can be expanded in the powers of
the inverse driving frequency 1/ω, a procedure known as the
high-frequency expansion [26],

Heff(t ) = Heff(0)(t ) + Heff(1)(t ) + · · · , (17)

where the nth term Heff(n) is proportional to ω−n. We restrict
consideration to the first two terms given by

Heff(0) = H (0)(t ), (18)

Heff(1)(t ) = 1

h̄ω

∞∑
l=1

1

l
[H (l )(t ), H (−l )(t )], (19)

where H (l )(t ) are slowly changing operators featured in
the Fourier expansion of the time-periodic Hamiltonian
H (ωt, t ) = H (ωt + 2π, t ) with respect to the first argument
ωt :

H (ωt, t ) =
∞∑

l=−∞
H (l )(t )eilωt . (20)

Since γ (ωt, t ) given by Eq. (10) is expanded in the inverse
powers of ω, the Fourier components H (l )(t ) can also be
expanded in powers of 1/ω, i.e., H (l )(t ) = H (l )

0 (t ) + H (l )
1 (t ) +

· · · . In the present situation H (0)
1 (t ) = 0, so it is sufficient to

keep only the leading term of γ (ωt, t ) given by Eq. (12) when
considering Heff(0)(t ) and Heff(1)(t ).

The Fourier component H (0)(t ) providing the zeroth-order
effective Floquet Hamiltonian H̃eff (0)(t ) is obtained by aver-
aging the Hamiltonian H̃ (ωt, t ) with respect to the rapidly
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changing argument ωt . According to Eq. (10), the function
γ (ωt, t ) averages to zero (2π )−1

∫ 2π

0 γ (s, t )ds = 0 and the

average of its square is (2π )−1
∫ 2π

0 γ 2(s, t )ds = f 2(t )/2. Fur-
thermore, according to Eq. (5), α(ωt ) averages to unity over
the period. Thus, using Eqs. (13) and (16) for H̃ (ωt, t ), the
slowly changing zeroth-order effective Floquet Hamiltonian
reads

H̃eff (0)(t ) = HSI + g(t )ωα

2π
S̃x(z, t ) + k2

β f 2(t )

4m
S2

z . (21)

In what follows we consider the case of the spin 1/2 for
which the Cartesian components of the spin operator read
Su = h̄σu/2 (with u = x, y, z), where σu are the Pauli matrices.
In that case S2

z = h̄2/4, so the last term of Eq. (21) is spin
independent and represents the slowly changing shift in the
origin of energy. As demonstrated in Appendix B, for the
spin 1/2 one can make simplifications also to the first-order
effective Hamiltonian, leading to the result

Heff (1)(t ) = ωα h̄kβ f (t )g(t )

4πmh̄ω
sin(θ0)(pzS̃y + S̃y pz ), (22)

where S̃y ≡ S̃y(z, t ) is given by

S̃y(z, t ) = cos(zkβ cos θ0)Sy − sin(zkβ cos θ0)Sx. (23)

Note that the first-order contribution H̃eff(1)(t ) to the effective
Hamiltonian reduces to zero for the most interesting situation
where θ0 = 0, in which the momentum of spin-orbit coupling
kβ cos θ0 is maximum and the condition (A4) holds the best,
as discussed below. In that case the zeroth-order effective
Hamiltonian H̃eff (0)(t ) describes effectively the evolution of
the system up to the terms quadratic in the inverse frequency
1/ω.

The operators H̃eff (0)(t ) and H̃eff (1)(t ) change slowly in time
due to slow changes of the amplitudes of the gradient and
Zeeman fields f (t ) and g(t ). The spin rotation term in Eq. (21)
for the effective Hamiltonian H̃eff (0)(t ) represents the SOC
characterized by the slowly changing strength g(t )ωα and the
wave number of the momentum transfer k0 = kβ cos θ0.
The wave number k0 is determined by the phase θ0 between
the gradient and the pulsed Zeeman fields, like in the station-
ary case where f (t ) = g(t ) = 1 [17]. The momentum transfer
is maximum and equals kβ for θ0 = 0 when the spikes of the
infrared Zeeman field are situated at zeros of the gradient
field. In that case the condition (A4) holds best and also
there is no first-order contribution to the effective Hamiltonian
H̃eff (1)(t ) = 0. On the other hand, the momentum transfer is
zero for θ0 = ±π/2 when the spikes of the Zeeman field
coincide with maxima and minima of the gradient field.

B. Dynamics of the system

The overall dynamics of the state vector of the system from
the initial to the final times governed by the slowly changing
periodic Hamiltonian H̃ (ωt, t ) = H̃ (ωt + 2π, t ) is described
by the evolution operator

U (tfn, tin ) = T exp

(
− i

h̄

∫ tfn

tin

H̃ (ωt ′, t ′)dt ′
)

, (24)

where T signifies the time ordering. The operator U (tfn, tin )
can be represented in terms of the effective evolution

operator Ueff(tfn, tin ) due to the slowly changing effective
Hamiltonian H̃eff (t ) and the micromotion operators
Umicro(ωt, t ) and U †

micro(ωt, t ) calculated at the initial and
final times t = tin and t = tfn [26]:

U (tfn, tin ) = Umicro(ωtfn, tfn )Ueff(tfn, tin )U †
micro(ωtin, tin ). (25)

Here the effective evolution is given by

Ueff(tfn, tin ) = T exp

(
− i

h̄

∫ tfn

tin

H̃eff(t
′)dt ′

)
(26)

and the micromotion operator reads, up to the terms linear in
1/ω,

Umicro(ωt, t ) ≈ 1 − 1

h̄ω

∑
m �=0

1

m
H (m)(t )eimωt . (27)

The operator Umicro(ωt, t ) describes effects due to the fast
changes of the Hamiltonian H̃ (ωt, t ). It goes to the unity
when periodic driving switches off [26]. Thus, in the present
situation the micromotion operator Umicro(ωt, t ) reduces to
unity for t = tin and t = tfn. In this way, the overall dy-
namics described by the slowly changing effective Floquet
Hamiltonian H̃eff (t ) = H̃eff (0)(t ) + H̃eff (1)(t ) + · · · should re-
produce well the exact dynamics governed by the exact
Hamiltonian H̃ (ωt, t ). An additional temporal dependence is
due to the time-dependent unitary operator Ũz(t ) transforming
the original state vector to the new representation. However,
the transformation Ũz(t ) given by Eq. (7) reduces to unity at
the initial and final times and thus does not affect the overall
evolution of the system from the initial to the final times.
Therefore, one can consider the time evolution from the initial
to the final times governed by the transformed Hamiltonian
H̃ (ωt, t ), which in turn can be described by the slowly chang-
ing effective Floquet Hamiltonian H̃eff (t ), i.e.,

U (tfn, tin ) = Ueff(tfn, tin ). (28)

In the next section we make sure that this is the case.
In the stationary regime where f (t ) = g(t ) = 1 the effec-

tive Floquet Hamiltonian (21) becomes time independent and
for the case of spin 1/2 is given by

H̃eff (0) = HSI + ωα

2π
[cos(zk0)Sx − sin(zk0)Sy] + h̄2k2

β

16m
, (29)

with k0 = kβ cos θ0. The effective Hamiltonian given by
Eq. (21) or (29) is analogous to the light-induced coupling
between the (quasi-)spin-up and -down states accompanied
by the recoil k0, like the one used to study the spin squeez-
ing in optical lattices [13]. The Hamiltonian reduces to the
SOC involving coupling between the linear momentum px

and the spin component Sx via the unitary transformation
exp(i z

h̄ k0Sz ) [5]. Note also that the effective Hamiltonian (21)
or (29) has been derived under the high-frequency assump-
tion, implying that the driving frequency is larger than all
the frequencies associated with the time-periodic Hamiltonian
H̃ (ωt, t ) changing slowly within the driving period. In that
case the effective Hamiltonian reproduces very well the exact
evolution, as we will see next.
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C. Exact vs numerical results

We compare the time evolution of the time-dependent
Schrödinger equation, calculated numerically for both cases:
the exact time-periodic Hamiltonian H̃ (ωt, t ) and the ef-
fective Hamiltonian H̃eff (0)(t ). The two-component (spinor)
wave functions |ψ (t )〉 and |φ(t )〉 governed by H̃ (ωt, t ) and
H̃eff (0)(t ), respectively, are chosen to be the same at the initial
time |φ(tin )〉 = |ψ (tin )〉. Both spinor wave functions should
be almost identical at the final time |φ(tfin)〉 = |ψ (tfin)〉 if
the high-frequency conditions are met: (i) p2

z/2m � h̄ω, (ii)
pzk0/m � ω, (iii) ωα � ω, and (iv) f ′(t ) � ω and g′(t ) � ω.
Additionally, the duration of the Zeeman pulses �T should
be small enough compared to the driving period T = 2π/ω,
so there is an extra condition following from (A4) in Ap-
pendix A 2: (v) Lkβ |ω�T sin θ0 − [(ω�T )2/2] cos θ0| � 1,
where the sample length L is taken to be much larger than
the inverse momentum 1/kβ , i.e., Lkβ 
 1. Condition (v) is
satisfied in the experiment [17] where the sample length is
of the order of 100 µm, the wave number kβ is of the order
of (µm)−1, and ω�T = 0.01 � 1. Note that condition (v)
holds best if the phase difference is zero θ0 = 0, i.e., when the
spikes of the Zeeman field α(ωt ) are situated at zero points
of the profile β(ωt ). In that case condition (v) reduces to
Lkβ (ω�T )2/2 � 1.

In the numerical calculations, we assume that the atoms are
confined in a square well with infinitely high potential bound-
aries at z = ±L/2 and zero potential for z ∈ [−L/2, L/2].
The ramping functions f (t ) and g(t ) are taken to have the
form

f (t ) = 1

2
{tanh[c(t − τ/2)] + tanh[c(7τ/2 + τ ′′ − t )]},

(30)

g(t ) = 1

2
{tanh[c(t − 3τ/2)] + tanh[c(5τ/2 + τ ′′ − t )]},

(31)

where τ ′′ is the time interval between the ramping on and off,
1/c is the ramping time of the periodic driving, and τ is the
time delay between the ramping of the functions f (t ) and g(t ).
By taking cτ > 4 we choose tin = 0, t ′

in = τ , and t ′′
in = 2τ and

similarly t ′′
fn = τ ′′ + 2τ , t ′

fn = τ ′′ + 3τ , and tfn = τ ′′ + 4τ . In
that case we have f (0) ≈ g(τ ) ≈ 0 and f (τ ) ≈ g(2τ ) ≈ 1,
as well as f (τ ′′ + 4τ ) ≈ g(τ ′′ + 3τ ) ≈ 0 and f (τ ′′ + 3τ ) ≈
g(τ ′′ + 2τ ) ≈ 1, as illustrated in Fig. 2.

Note that, according to condition (iv) presented at the be-
ginning of Sec. III C, the ramping rate f ′(t ) ∼ c should be
much smaller than the driving frequency ω. On the other hand,
the ramping time should be smaller than the decoherence time
τdecoh. The latter condition cannot be met in the experiment of
Ref. [17] in which the decoherence time is of the order of 1
ms whereas the driving period is only around 10 times smaller.
To satisfy the slow ramping condition, one should increase the
decoherence time, which is expected to be done in the future
experiments. In the subsequent plots displayed in Figs. 3 and
4 the ramping rate is taken to be 100 times smaller than the
driving frequency, which can be applied to future experiment
with the relative decoherence times ωτdecoh larger than that in
Ref. [17].

FIG. 3. Functions G(tfn ) and A(tfn ) involving three different po-
larizations i ∈ {x, y, z} for the following parameters: ω = 100ER,
ωα = ER, c = kR, τ = 5E−1

R , τ ′′ = 5E−1
R , ω�T = 0.01, θ0 = 0,

kβ = kR, and L = 100k−1
R

FIG. 4. Comparison of dependence of functions G(tfn ) and A(tfn )
on θ0 for the following parameters: ω = 10ER, ωα = ER, c = 0.1ER,
τ = 100E−1

R , τ ′′ = 150E−1
R , ω�T = 0.01, n = 1, kβ = kR, and L =

100k−1
R .
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1. Comparison of exact and effective dynamics

To compare the dynamics, we look at the inner product
between the state vectors |φ(t )〉 and |ψ (t )〉 evolving by the
exact time-periodic Hamiltonian H̃ (ωt, t ) and the effective
slowly changing Hamiltonian H̃eff (0)(t ), respectively,

〈ψ (t )|φ(t )〉 =
∫ L

0
dz〈ψ (t, z)|φ(t, z)〉

=
∫ L

0
dz

∑
s={↑,↓}

〈ψ (t, z)|s〉〈s|φ(t, z)〉. (32)

If the inner product 〈ψ (t )|φ(t )〉 is unity for t = tfn, the overall
dynamics of the two state vectors is equivalent. Otherwise,
this is not the case. Thus, for numerics, one may look at
|〈ψ (t )|φ(t )〉| and arg[〈ψ (t )|φ(t )〉]. Deviations of these quan-
tities from 1 and 0, respectively, signify differences between
the state vectors and thus the nonequivalence of the dynamics.
We explore these differences for state vectors characterized
by three orthogonal initial spin polarizations. For this we
introduce the functions

G(t ) := 1

3

∑
i={x,y,z}

|〈ψ (i)(t )|φ(i)(t )〉|, (33)

A(t ) := 1

3

∑
i={x,y,z}

arg〈ψ (i)(t )|φ(i)(t )〉, (34)

where once again deviations of these functions from 1 and
0 signify differences between the state vectors. Specifically,
the spatial part of the initial state vectors is taken to be an
eigenstate of the box potential �n(z) and the spin is pointing
along the x, y, and z axis,∣∣ψ (i)

n (t = 0)
〉 = �n(z)|i〉, i ∈ {x, y, z}, (35)

where

�n(z) =
√

2

L
sin

(πn

L
z
)

(36)

and

|x〉 = 1√
2

(
1
1

)
, |y〉 = 1√

2

(
1
i

)
, |z〉 =

(
1
0

)
. (37)

The functions G(tfn ) and A(tfn ) are presented in Fig. 3. One
can see that G(tfn ) ≈ 1 and A(tfn ) ≈ 0. This shows that for
θ = 0 the overall dynamics from the initial to the final times is
well described in terms of the effective dynamics governed by
the zeroth-order effective Hamiltonian. Indeed, the first-order
effective Hamiltonian H̃eff (1)(t ) presented in Eq. (22) goes
to zero for θ0 = πn0, where n0 is an integer number. Addi-
tionally, due to adiabatic ramping described by the ramping
functions f (t ) and g(t ), the effects of micromotion disappear
at the initial and final times in the plots displayed in Fig. 3 as
well as in Fig. 4. Therefore, for θ0 = πn0, the approximate
dynamics given by the zeroth-order effective Hamiltonian
H̃eff (0)(t ) is accurate up to second order in the inverse
frequency.

2. First-order correction effect

If θ0 �= πn0, the first-order effective Hamiltonian is no
longer zero and the approximate dynamics is accurate only

up to first order in the inverse frequency. In Fig. 4 we demon-
strate the difference in the approximation accuracy for various
θ0 by calculating the dependence of G(tfn ) on θ0. One can
see clearly that the approximation holds best for θ0 ≈ πn0,
for which H̃eff (1) = 0. Here we have deliberately chosen the
driving frequency ω to be considerably smaller than the one
used in other plots so that one can more clearly see the relative
importance of first-order correction term H̃eff (1).

IV. CONCLUSION

We have demonstrated how to bypass the micromotion
emerging in the magnetically induced SOC by switching on
and off in a proper way the oscillating magnetic fields at the
initial and final times. We have studied the exact dynamics
of the system from the initial to the final times governed by
the time-periodic Hamiltonian and compared it to the dy-
namics described by the slowly changing effective Floquet
Hamiltonian. The two dynamics agree well under the assump-
tion of the high-frequency driving. The agreement is shown to
be best when the phase of the periodic driving takes a specific
value for which the effect of the spin-orbit coupling is max-
imum. In that case the first-order effective Floquet vanishes
and the zeroth-order Floquet Hamiltonian is correct up to the
second-order expansion in the inverse powers of the driving
frequency. The overall dynamics is thus well described by
the slowly changing zeroth-order effective Floquet Hamilto-
nian containing the SOC term. In this way, the magnetically
induced SOC can be induced in a controllable way without
involving the micromotion. This opens the path for practical
applications of magnetically generated SOC, e.g., generation
of nontrivial topological or spin-squeezed states for ultracold
atoms in optical lattices, when the optically generated SOC is
complicated to apply.
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APPENDIX A: ANALYSIS OF γ (t ) = γ (ωt, t )

1. Function γ (ωt, t )

Let us now determine how to separate a fast periodic time
dependence of γ (t ) = γ (ωt, t ) from its additional slow tem-
poral dependence. To that end, we expand γ (t ) as a series of
f (n)(t )/ωn terms, where f (n)(t ) denotes an nth-order tempo-
ral derivative of the slowly varying envelope function f (t ).
Substituting Eq. (4) into (7) and integrating by parts, one
finds

γ (t ) = ω

∫ t

tin

f (s) sin(ωs − θ0)ds

= − f (s) cos(ωs − θ0)|ttin + f ′(s)

ω
sin(ωs − θ0)

∣∣∣∣
t

tin

−
∫ t

tin

f ′′(s)

ω
sin(ωs − θ0)ds. (A1)
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This provides an expansion in a series of terms proportional
to f (n)/ωn,

γ (t ) = γ (ωt, t ) = − f (t ) cos(ωt − θ0)

+ f ′(t )

ω
sin(ωt − θ0)

+ f ′′(t )

ω2
cos(ωt − θ0) + · · · , (A2)

where we used the fact that f (tin ) = f ′(tin ) = f ′′(tin ) = 0.

2. Estimation of error

To estimate an error made in writing Eq. (16) for S̃x(z, t ),
let us expand the function γ (ωt, t ) given by Eq. (10) in the
powers of t − tn around a spike centered at tn = nT , with n an
integer. Since the amplitude f (t ) reaches its stationary value
when g(t ) is still zero, one finds, up to the quadratic term by
setting f (t ) = 1.

γ (ωt, t ) ≈ −ω(t − tn) sin θ0 + ω2(t − tn)2 cos θ0. (A3)

Therefore, the maximum displacement |t − t ′
in| = �T/2 at

which α(ωt ) is still nonzero yields the following maximum
value of |γ (ωt )|:

γmax ≈ |(ω�T/2) sin θ0| + |(ω�T )2/2 cos θ0|. (A4)

Since ω�T = 2π�T/T � 1, then γmax � 1.
Equation (16) is valid if

Lkβγmax � 1, (A5)

where L = zmax is a characteristic size of the atomic cloud.
The condition (A5) holds best if the phase difference is zero
θ0 = 0, i.e., when the spikes of the Zeeman field α(ωt ) are
situated at zero points of the profile β(ωt ). In that case γmax =
(ω�T )2/2 is quadratic in ω�T and the condition (A5) re-
duces to

Lkβ (ω�T )2/2 � 1. (A6)

Equations (A4)–(A6) provide restrictions on the size of the
atomic cloud L. Since Lkβ 
 1, the width of the spikes
should be sufficiently small compared to the driving period
T = 2π/ω.

APPENDIX B: FIRST-ORDER EFFECTIVE HAMILTONIAN

Here we provide explicit calculations of the first-order
effective Hamiltonian in the transformed frame. The general
formula for the first-order effective Hamiltonian is presented
by Eq. (22),

H̃eff(1)(t ) = 1

h̄ω

∞∑
l=1

1

l
[H̃ (l )(t ), H̃ (−l )(t )], (B1)

where H̃ (l )(t ) are the Fourier components of the transformed
Hamiltonian H̃ (ωt, t ) with respect to the first argument ωt .
The latter H̃ (ωt, t ) is given by Eq. (13),

H̃ (ωt, t ) = HSI − pzkβ

m
Szγ (ωt, t )

+ ωαg(t )α(ωt )S̃x(z, t ) + k2
β

2m
γ 2(ωt, t )S2

z . (B2)

Using the approximate expression (12) for γ (ωt, t ), one
has γ (ωt, t ) ≈ − f (t ) cos(ωt − θ0). Thus the nonzero Fourier
modes of γ (ωt, t ) with m = ±1 read

γ (±1)(t ) = − f (t )

2
e∓iθ0 . (B3)

Since the amplitude α(ωt ) is composed of sharp peaks at t =
nT , the Fourier components α(±l ) weakly depend on l and can
be written α(±l ) = 1/2π for any l � 0.

Next we analyze the specific Fourier components H (±l )

contributing to the effective Hamiltonian (B1).

1. Contribution by l = 1 Fourier modes

Fourier components H̃ (l ) with l = ±1 are

H̃ (±1)(t ) = kβ f (t )

2m
e∓iθ0 pzSz + ωαg(t )

2π
S̃x. (B4)

The corresponding commutator featured in the effective
Hamiltonian (B1) reads

[H̃ (1), H̃ (−1)] = − iωαkβ f (t )g(t )

2πm
sin(θ0)[pzSz, S̃x]. (B5)

The commutator may be rewritten as

[pzSz, S̃x] = pz[Sz, S̃x] + [pz, S̃x]Sz, (B6)

where

S̃x(z, t ) = cos(zkβ cos θ0)Sx + sin(zkβ cos θ0)Sy. (B7)

Using [Sz, S̃x] = ih̄S̃y and [pz, S̃x] = −ih̄kβ cos θ0S̃y, one ob-
tains

[pzSz, S̃x] = ih̄pzS̃y − ih̄kβ cos θ0S̃ySz, (B8)

where

S̃y = cos(zkβ cos θ0)Sy − sin(zkβ cos θ0)Sx. (B9)

In what follows we will consider the case of the spin
1/2. In that case one has S̃ySz = ih̄S̃x/2, so one can make
further simplifications using ih̄kβ cos θ0S̃x = [pz, S̃y]. Con-
sequently, the commutator featured in Eq. (B5) reduces
to

[pzSz, S̃x] = i
h̄

2
(pzS̃y + S̃y pz ). (B10)

Substituting Eq. (B10) into Eqs. (B5) and (B1), one arrives at
the first-order effective Hamiltonian given by Eq. (22).

2. Contribution by l = 2 Fourier modes

Noting that

γ 2(ωt, t ) ≈ f 2(t )

2

(
1 − 1

2
e−i2θ0 ei2ωt − 1

2
ei2θ0 e−i2ωt

)
,

(B11)

the Fourier modes H̃ (l ) with l = ±2 read

H̃ (±2)(t ) = ωαg(t )

2π
S̃x − k2

β f 2(t )

32m
e∓i2θ0 S2

z . (B12)

For spin 1/2 one has S2
z = 1/4, so the last term of Eq. (B12)

is proportional to the identity operator and the commutator
[H̃ (2)(t ), H̃ (−2)(t )] reduces to zero. For arbitrary spin, the
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commutator [H̃ (2)(t ), H̃ (−2)(t )] is no longer zero and the first-
order effective Hamiltonian becomes more complicated.

3. Contribution by Fourier modes with l > 2

The Fourier modes H (±l )(t ) with l > 2 are all the same:

H (±l )(t ) = ωαg(t )

2π
S̃x for l > 2. (B13)

So the commutators [H (l )(t ), H (−l )(t )] vanish for l > 2.

4. Final result

In this way the first-order effective Hamiltonian reads, us-
ing Eqs. (B1), (B5), and (B10),

Heff (1)(t ) = ωα h̄kβ f (t )g(t )

4πmh̄ω
sin(θ0)(pzS̃y + S̃y pz ). (B14)
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95, 023615 (2017).

053319-8

https://doi.org/10.1103/PhysRevLett.95.010404
https://doi.org/10.1103/PhysRevLett.99.110403
https://doi.org/10.1103/PhysRevA.77.011802
https://doi.org/10.1038/nature09887
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1088/0034-4885/78/2/026001
https://doi.org/10.1063/PT.3.4111
https://arxiv.org/abs/2404.12429
https://doi.org/10.1103/PhysRevLett.101.265302
https://doi.org/10.1103/PhysRevResearch.4.033180
https://doi.org/10.1103/PhysRevResearch.3.013178
https://doi.org/10.1103/PhysRevLett.129.090403
https://doi.org/10.1103/PhysRevLett.111.125301
https://doi.org/10.1103/PhysRevA.87.063634
https://doi.org/10.1038/srep18983
https://doi.org/10.1103/PhysRevLett.123.033203
https://doi.org/10.1038/nphys2998
https://doi.org/10.1103/PRXQuantum.3.030328
https://doi.org/10.1103/PhysRevResearch.2.013149
https://doi.org/10.1103/PhysRevA.107.023309
https://doi.org/10.1103/PhysRevB.108.104301
https://doi.org/10.1103/PhysRevLett.129.250402
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1103/PhysRevA.95.023615

