Theory of 1/f noise, modeling flicker noise, econophysics, physics of finance and physics of risk
1/f noise ("one-over-f
noise", occasionally called "flicker noise" or "pink noise") is a
type of noise whose power spectra P(f) as a function of the frequency f behaves like: P(f)
= 1/fd , where the exponent d is
close to 1. The omnipresence of 1/f noise (one of the oldest puzzles in contemporary
physics) has led to presumptions that there might exist some generic mechanism underlying
production of 1/f noise.
Here, considering currents and signals consisting of a sequence of pulses, it is shown
that intrinsic origin of 1/f noise is a random walk of the average time between subsequent
pulses of the pulse sequence, or inter-event time. The conclusion that 1/f noise may
result from the clustering of the signal pulses, elementary events, or particles can be
drawn from the analysis of the model systems. Further we derive and analyze stochastic nonlinear differential
equations generating 1/f β noise and apply the models for the
financial and other systems.
- J. Ruseckas and B. Kaulakys, Intermittency in relation with 1/f noise and stochastic differential equations, Chaos 23 023102 (2013); doi:10.1063/1.4802429; PDF.
- J. Ruseckas, V. Gontis, and B. Kaulakys, Nonextensive statistical mechanics distributions and dynamics of financial observables from the nonlinear stochastic differential equations, Advances in Complex Systems 15 Suppl. 1, 1250073 (2012); doi:10.1142/S0219525912500737; PDF.
- J. Ruseckas, B. Kaulakys and V. Gontis, Herding model and 1/f noise, EPL 96 60007 (2011); doi:10.1209/0295-5075/96/60007; PDF.
- J. Ruseckas and B. Kaulakys, Tsallis distributions and 1/f noise from nonlinear stochastic differential equations, Phys. Rev. E 84 051125 (2011); doi:10.1103/PhysRevE.84.051125; PDF.
- Alaburda M. and Kaulakys B. Simulation of bursting, rare and extreme events by nonlinear stochastic differential equations, Dynamics of Socio-Economic Systems 2 (2) p.175-182
- B. Kaulakys and J. Ruseckas, Solutions of nonlinear stochastic differential equations with 1/f noise power spectrum, IEEE Conferences: Noise and Fluctuations (ICNF), 2011 21st International Conference on, p. 192-195 (2011); doi:10.1109/ICNF.2011.5994297; PDF.
- B. Kaulakys and M. Alaburda, Modeling the inverse cubic distributions by nonlinear stochastic differential equations, IEEE Conferences: Noise and Fluctuations (ICNF), 2011 21st International Conference on, p. 499-502 (2011); doi:10.1109/ICNF.2011.5994380; PDF.
- J. Ruseckas and B. Kaulakys, 1/f noise from nonlinear stochastic differential equations, Phys. Rev. E 81 031105 (2010); doi:10.1103/PhysRevE.81.031105; PDF.
- B. Kaulakys, M. Alaburda and V. Gontis, Modeling scaled processes and clustering of events by the nonlinear stochastic differential equations, ICNF 2009, AIP Conf. Proc. 1129, p. 13-16 (2009); PDF; doi:10.1063/1.3140414.
- V. Gontis, B. Kaulakys and J. Ruseckas, Nonlinear stochastic differential equation as the background of financial fluctuations, ICNF 2009, AIP Conf. Proc. 1129, p. 563-566 (2009); PDF; doi:10.1063/1.3140536.
- B. Kaulakys, M. Alaburda, V. Gontis, and J. Ruseckas, Modeling long-memory processes by stochastic difference equations and superstatistical approach, Brazilian Journal of Physics 39 (2A), p. 453-456 (2009); PDF.
- B. Kaulakys and M. Alaburda, Modeling scaled processes and 1/fβ noise using nonlinear stochastic differential equations, J. Stat. Mech. P02051 (2009); doi:10.1088/1742-5468/2009/02/P02051; PDF.
- Gontis V., Kaulakys B. and
Ruseckas J. Trading activity as driven Poisson process: comparison with
empirical data,
Physica A 387 (15) p. 3891-3896 (2008); doi:10.1016/j.physa.2008.02.078;
arXiv.org/abs/0710.1439;
[physics.soc-ph]; PDF.
- Kaulakys B., Gontis V. and Alaburda M., Point
process model of 1/f noise vs a sum of Lorentzians, Phys.
Rev. E 71 (5) 051105 (2005); doi:10.1103/PhysRevE.71.051105; e-Print cond-mat/0504025; PDF.
- Kaulakys B., Ruseckas J., Gontis V. and Alaburda M.
Nonlinear stochastic models of 1/f noise and power-law distributions,
Physica A 365 p.217-221
(2006); doi:10.1016/j.physa.2006.01.017; cond-mat/0509626; PDF.
- Gontis V. and Kaulakys B. Modeling long-range memory trading activity by stochastic
differential equations, Physica A 382 (1) p.114-120 (2007); doi:10.1016/j.physa.2007.02.012;
physics/0608036; PDF.
- Kaulakys B., Alaburda M. and Ruseckas J. Modeling Non-Gaussian 1/f noise by the
stochastic differential equations, NOISE AND FLUCTUATIONS: 19th
International Conference on Noise and Fluctuations - ICNF 2007, AIP
Conf. Proc. 922, p. 439- 442
(2007); doi:10.1063/1.2759716; PDF.
- Kaulakys B., Alaburda M. and Gontis V. Point Processes Modeling of time series
exhibiting power-law statistics, NOISE AND FLUCTUATIONS: 19th
International Conference on Noise and Fluctuations - ICNF 2007, AIP
Conf. Proc. 922, p.535-538
(2007); doi:10.1063/1.2759736; PDF.
- Gontis V. and Kaulakys B. Multiplicative point process as
a model of trading activity, Physica
A A 343 p.505-514 (2004); PDF.
- Gontis V. and Kaulakys B. Modelling financial markets by
the multiplicative sequence of trades, Physica
A 344 (1-2) p.128-133 (2004); PDF.
- Kaulakys B. and Ruseckas J. Stochastic
nonlinear differential equation generating 1/f noise, Phys. Rev. E (Rapid
Communication) 70 (2) 020101 (2004); cond-mat/0408507; PDF.
- Gontis V., Kaulakys B., Alaburda M. and Ruseckas J. Evolution
of complex systems and 1/f noise: from physics to financial markets,
Solid
State Phenomena 97-98 p.65-70 (2004); PDF.
- Ruseckas J., Kaulakys B. and Alaburda M. Modelling of 1/f noise by sequences of stochastic pulses of different duration, Lith. J. Phys. 43 (4) p.223-228 (2003).
-
Kaulakys B. On the inherent origin of 1/f noise, Lith. J. Phys. 40 (4) p.281-286 (2000).
- Kaulakys B. and Meškauskas T. Models for
generation of 1/f noise, Microelectronics
Reliability 40 (11), p.1781-1785 (2000); PDF.
- Kaulakys B. On the intrinsic origin of 1/f noise, Microelectronics
Reliability 40 (11), p.1787-1790 (2000); PDF.
- Kaulakys B. Autoregressive
model of 1/f noise, Phys.
Letters A 257 (1-2) p.37-42 (1999); adap-org/9907008; PDF.
- Kaulakys B. and Meškauskas T. Modeling
1/f noise, Phys.
Rev. E 58 (6), p.7013-7019 (1998); adap-org/9812003; PDF.
- Kaulakys B. Simple model of 1/f noise (1998), e-print archives: adap-org/9806004.
- Kaulakys B. and Meškauskas T. Models for generation of 1/f noise, In: Noise in
Physical Systems and 1/f Fluctuations, Proc. 15th Intern. Confer., Bentham Press,
London, 1999, p.375-378.
- Kaulakys B. On the intrinsic origin of 1/f noise, ibid, p.467-470.
- Kaulakys B. and Meškauskas T. On the generation and origin
of 1/f noise, Nonlinear Analysis: Modelling
and Control, Vol. 4, p. 87-95 (1999); PDF.
- Bastys A. and Kaulakys B. Long-memory processes with 1/f spectrum, 7th Vilnius Conf.
on Probab. Theory and 22nd European Meeting of Statisticians, Vilnius, August 12-18,
1998, Abstracts (Vilnius, TEV, 1998), p.144.
- Kaulakys B. and Meškauskas T. On the generation and origin of 1/f noise, ibid, p. 265.
- Kaulakys B. and Meškauskas T. On the 1/f fluctuations in the nonlinear systems affected
by noise, In: Noise in Physical Systems and 1/f Fluctuations, Proc. 14th Intern.
Confer., World Scientific, Singapore, 1997, p.126-129; adap-org/9806002
.
- Kaulakys B. and Vektaris G. Transition to nonchaotic behaviour in randomly driven
systems: intermittency and 1/f-noise, In: Noise in Physical Systems and 1/f
Fluctuations, Proc. 13th Intern. Confer., World Scientific, Singapore, 1995,
p.677-680.
- Kaulakys B. Vidine 1/f triukšmo kilme, 33-oji Lietuvos nacionaline fizikos
konferencija, Vilnius, 1999 m. rugsejo 16-18 d., Tezes, p.319.
Synchronization of chaotic systems driven by identical noise
Transition to nonchaotic behavior and synchronization of ensemble of chaotic systems
driven by identical random forces are analyzed.
- Kaulakys B., Ivanauskas F. and Meškauskas T. Synchronization
of chaotic systems driven by identical noise, Intern.
J. Bifurcation and Chaos 9 (3) p.533-539
(1999); chao-dyn/9906001; PDF.
- Kaulakys B. and Vektaris G. Transition
to nonchaotic behaviour in a Brownian-type motion, Phys. Rev. E, 52
(2), p.2091-2094 (1995); and e-print archives: abs/chao-dyn/9504009; PDF.
- Kaulakys B. and Vektaris G. Transition to nonchaotic behaviour in randomly driven
systems: intermittency and 1/f-noise, In: Noise in Physical Systems and 1/f
Fluctuations, Proc. 13th Intern. Confer., World Scientific, Singapore, 1995,
p.677-680.
- Kaulakys B. Maps for analysis of nonlinear dynamics, Nonlinear Analysis: Modelling and Control,
Vol. 2, p.43-58 (1998); chao-dyn/9809016
.
- Kaulakys B., Ivanauskas F. and Meškauskas T. Synchronization in the identically driven
systems, Proc. of the Intern. Conf. on Nonlinearity, Bifurcation and Chaos: the Doors
to the Future, Lodz-Dobiesckow, Sept. 16-18, 1996, p.145-148; chao-dyn/9610020
.
- Ivanauskas F., Meškauskas T. and Kaulakys B. Solution of the equations of dynamical
chaos, New Trends in Probability and Statistics, Vol. 4, Analytical and
Probabilistic Methods in Number Theory, Proc. of the Second Intern. Conf., (23-27
Sept., 1996, Palanga, Lithuania), Eds. A. Laurincikas et
al., VPS/TEV, Vilnius, 1997, p.467-474.
- Ivanauskas F., Meškauskas T. and Kaulakys B. Synchronizing influence of identical noise
in chaotic systems, Lietuvos matematiku draugijos XXXVIII
konferencijos darbai, Vilnius, 1997 m. birželio
18-19, p.268-273.
- Kaulakys B. Chaosas klasikineje ir kvantineje dinamikoje, Netiesiniai procesai: modeliavimas ir valdymas
(Nonlinear Analysis: Modelling and Control),
Vilnius, MII, 1997, No. 1, p.47-53.
Chaotic dynamics and ionization of atoms in microwave field
Mapping equations of motion (Kepler map) of the highly excited atom in microwave field
are derived and analyzed for large range of parameters of the problem.
- Alaburda M., Gontis V. and Kaulakys B. Interaction and chaotic dynamics of the classical hydrogen atom in an electromagnetic field, Lith. J. Phys. 40 (4) p.242-247 (2000).
- Kaulakys B. and Vilutis G. Kepler map, Physica Scripta 59
(4), p. 251-256 (1999); chao-dyn/9904022; PDF.
- Kaulakys B., Grauzhinis D. and Vilutis G. Modelling
by maps of two-frequency microwave ionization of hydrogen atoms,
Europhys. Lett.,
43 (2), p.123-128 (1998); physics/9808048; PDF.
- Gontis V. and Kaulakys B. Stochastic dynamics of hydrogenic
atoms in the microwave field: modelling by maps and quantum
description, J.
Phys. B: At. Mol. Phys., 20, p.5051-5064
(1987); PDF.
- Kaulakys B., Gontis V., Hermann G. and Scharmann A. Scaling
relations for the hydrogen atom in a harmonic field: classical chaos
and quantum suppression of diffusion, Phys.
Letters A, 159, p.261-265 (1991); PDF.
- Kaulakys B. Quasiclassical dipole matrix elements for high
atomic states and stochastic dynamics of hydrogen atoms in microwave
fields, J.
Phys.B: At. Mol. Opt. Phys., 24,
p.571-585 (1991); PDF.
- Kaulakys B. Consistent analytical approach for the
quasi-classical radial dipole matrix elements, J. Phys. B: Atom. Molec. Opt. Phys.,
28 (23), p.4963-4971 (1995); physics/9610018; PDF.
- Kaulakys B. Scaling analysis for chaotic ionisation of excited hydrogen atoms in
microwave field, Acta Phys. Polonica B, 23, p.313-316 (1992).
- Kaulakys B. and Cižiunas A. A theoretical determination of
the diffusion-like ionisation time of Rydberg atoms, J. Phys. B: At. Mol.
Phys., 20, p.1031-1038 (1987); PDF.
- Kaulakys B. and Vilutis G. Ionization of Rydberg atoms in a low frequency field:
modelling by maps of transition to chaotic behaviour, In: Chaos - The Interplay Between
Stochastic and Deterministic Behaviour, Proc. Karpacz'95, Ed. by P.Garbaczewski et al,
Springer-Verlag, Berlin 1995, pp.445-450; chao-dyn/9503011
.
- Kaulakys B. and Vilutis G. Rydberg atoms ionisation by microwave field and
electromagnetic pulses, Resonance Ionization Spectroscopy 1994 (Proc. 7th Intern.
Symp., Bernkastel-Kues (Germany), 3-8 July, 1994), AIP Conf. Proc. 329, AIP, New York,
1995, p.389-392; e-print archives: quant-ph/9504007
.
- Kaulakys B., Gontis V. and Vilutis G. Ionisation of Rydberg atoms by subpicosecond
electromagnetic pulses, Lithuanian J. Phys., 33 (5-6), p.354-357 (1993); Lithuanian
Phys. J. (Allerton Press), 33 (5-6), p.290-293 (1993).
- Gontis V. and Kaulakys B. Quasi-classical transition amplitudes for one-dimensional atom
in harmonic field, Lith. J. Phys., 31 (2), p.75-78 (1991).
- Gontis V. G. and Kaulakys B. P. Quasi-classical maps for one-dimensional systems with
periodic perturbation. Atom in microwave field, Liet. Fiz. Rink., 28, p.671-678
(1988) [Engl. tr.: Sov. Phys.- Coll., 28 (6), 1-6 (1988)].
- Gontis V. G. and Kaulakys B. P. The stochastic dynamics of a highly excited
hydrogen-like atom in a low frequency field, Liet. Fiz. Rink., 27 (3), p.368-370
(1987) [Engl. tr.: Sov. Phys.- Coll. 27 (3), 111-113 (1987)].
- Gontis V. G. and Kaulakys B. P. The stochastic dynamics of a highly excited
hydrogen-like atom in a low frequency field, Deposited in VINITI as No.5087- V86,
25pp. (1986).
- Alaburda M., Gontis V., Kaulakys B. Klasikinio vandenilio
atomo trikdymas ir chaotine dinamika elektromagnetiniame lauke, 33-oji Lietuvos
nacionaline fizikos konferencija, Vilnius, 1999 m. rugsejo 16-18 d., Tezes,
p.292-293.
Quantum measurement, quantum Zeno effect and quantum anti-Zeno effect
Consequence of the repetitive frequent measurement of the system's state (or random
perturbations of the system) on the quantum dynamics is analyzed. The essences of the
prevention of quantum dynamics (quantum Zeno effect) and restoration of the time evolution
(quantum anti-Zeno effect) are revealed.
- Ruseckas J. and Kaulakys B. Quantum trajectory
method for the quantum Zeno and anti-Zeno effects, Phys. Rev. A 73 (5) 052101 (2006); doi:10.1103/PhysRevA.73.052101; quant-ph/0605022; PDF.
- Ruseckas J. and Kaulakys B. Time problem in quantum mechanics and its analysis by the concept of weak measurement, Lith. J. Phys. 44 (2) p.161-182 (2004); quant-ph/0409006.
- Ruseckas J. and Kaulakys B. General
expression for the quantum Zeno and anti-Zeno effects, Phys. Rev.A 69 (3)
032104, 6 pp. (2004); quant-ph/0403123; PDF.
- Ruseckas J. and Kaulakys B. Weak
measurement of arrival time, Phys.
Rev.A 66 (5) 052106 (2002); quant-ph/0307006; PDF.
- Ruseckas J. and Kaulakys B. Time problem in quantum
mechanics and weak measurements,
Phys. Lett. A 287 (5-6) p.297-303 (2001); PDF.
- Ruseckas J. and Kaulakys B. Real
measurements and the quantum Zeno effect, Phys. Rev.A 63
(6) 062103 (2001); PDF.
- Kaulakys B. and Gontis V. Quantum
anti-Zeno effect, Phys.
Rev. A, 56 (2), p.1138-1141 (1997); quant-ph/9708024; PDF.
- Gontis V. and Kaulakys B. Quantum Zeno and quantum anti-Zeno effects, Lith. J. Phys., 38
(1), p.118-121 (1998); quant-ph/9806015.
- Kaulakys B. Dynamical peculiarities of nonlinear quasiclassical systems, Lith. J. Phys.,
36 (4), p.343-345 (1996); quant-ph/9610041.
- Gontis V. and Kaulakys B. Quantum dynamics of simple and complex systems affected by
repeated measurement, J. Tech. Phys. (Poland), 38 (2), p.223-226 (1997).
- Kaulakys B. Maps for analysis of nonlinear dynamics, Nonlinear Analysis: Modelling and Control,
Vol. 2, p.43-58 (1998); chao-dyn/9809016.
- Kaulakys B. Quantum dynamics with intermediate measurements in agreement with the
classical dynamics, Proc. Intern. Workshop ‘Quantum Systems: New Trends and
Methods’, (June 3-7, 1996, Minsk, Belarus), Eds. Y. S. Kim et al., World Scientific,
Singapore, 1997, p.46-50; quant-ph/9610019.
- Kaulakys B. On the quantum evolution of chaotic systems affected by repeated frequent
measurement, Quantum Communications and Measurement, Ed. V.P.Belavkin et al,
Plenum Press, London, 1995, p.193-197; quant-ph/9503018.
- Kaulakys B. Matavimu itaka sistemu evoliucijai, IX Pasaulio lietuviu mokslo ir
kurybos simpoziumas, Vilnius, 1995 m. lapkricio 22-25 d.d. Tezes, p.80.
- Gontis V. ir Kaulakys B. Kvantinis Zenono ir kvantinis anti-Zenono efektai, 32-oji
Lietuvos nacionaline fizikos konferencija, Vilnius, 1997 m. spalio 8-10 d., Tezes,
p.97-98.
Collisional broadening and shift of Rydberg levels
Analytical expressions for the Rydberg levels broadening and shift are obtained. The
relation between the broadening and shift of the Rydberg levels and the resonance in the
scattering of slow Rydberg electron by perturbing atoms are revealed.
- Hermann G., Kaulakys B. and Mahr G. Rare-gas-induced
broadening and shift of two-photon transitions to intermediate (n =
9-14) Rydberg states of atomic thallium, Eur. Phys. J. D,
1 (2), p.129-137 (1998); PDF.
- Kaulakys B. Broadening and shift of Rydberg levels by
elastic collisions with rare-gas atoms, J. Phys. B: At. Mol.
Phys., 17, p.4485-4497 (1984); PDF.
- Kaulakys B. Position and width of the resonance in the
electron-potassium scattering from self-broadening of Rydberg states, J. Phys. B: At. Mol.
Phys., 15, p.L719-L722 (1982); PDF.
- Kaulakis B. P., Presnyakov L. P. and Serapinas P. D. On
the possibility of studying autoionization states of negative ions in
terms of the broadening and displacement of the Rydberg series of
neutral atoms, Pis'ma Zh. Eksp. Teor. Fiz., 30,
p.60-63 (1979) [Engl. tr.: JETP
Lett., 30, 53-55 (1980)]; PDF.
- Kaulakis B. P. Relation
between the broadening of Rydberg levels and resonances in the
scattering of slow electrons by atoms, Opt. Spektrosk., 48,
p.1047-1053 (1980) [Engl. tr.: Opt.
Spectrosc., 48, 574-577 (1980)]; PDF.
- Hermann G., Kaulakys B., Lasnitschka G., Mahr G. and
Scharmann A. Dependence of collisional broadening and shift of Rydberg
levels on the angular momentum of the state, J. Phys. B: At. Mol.
Opt. Phys., 25, p.L407-L413 (1992); PDF.
- Hermann G., Kaulakys B. and Udem T. Theoretical approach
for collisional depolarization of Rydberg atoms, Z.
Phys. D, 28, p.119-122 (1993); PDF.
- Kaulakys B. and Serapinas P. Resent studies of interaction and collisions between
Rydberg atoms and neutral perturbers, Spectral Line Shapes, Vol.5 (9th Intern.
Conf. on Spectral Line Shapes, July 25-29, 1988, Torun, Inv. Papers), Ossolineum, Wroclaw,
1989, p.437-458.
- Kaulakys B. P. and Serapinas P. D. Spectroscopic studies of interaction between Rydberg
atoms and neutral atomic particles (survey), Liet. Fiz. Rink., 24 (3), p.3-37 (1984)
[Engl. tr.: Sov. Phys.-Coll., 24 (3), 1-30 (1984)].
- Kaulakys B. P. Analysis of the validity criteria of modern methods for high-temperature
plasma diagnostics, Proc. of Moscow Institute of Physics and Technology, No.8, p.108-115
(1976).
Inelastic collisions of Rydberg atoms with neutral atomic particles
Free electron model and other analytical descriptions for inelastic collisions between
neural atomic particles (atoms or molecules) and Rydberg atoms are developed. The results
are applicable for the astrophysical modeling.
- Kaulakys B. Free electron model for collisional angular
momentum mixing of high Rydberg atoms, J. Phys. B: At. Mol.
Opt. Phys., 24, p.L127-L132 (1991); PDF.
- Kaulakys B. Analytical expressions for cross sections of
Rydberg-neutral inelastic collisions, J. Phys. B: At. Mol.
Phys., 18, p.L167-L170 (1985); PDF.
- Kaulakys B. P. Free electron model for inelastic collisions
between neutral atomic particles and Rydberg atoms, Zh. Eksp. Teor.
Fiz., 91, p.391-403 (1986) [Engl. tr.: Sov. Phys.- JETP, 64,
229-235 (1986)]; PDF.
- Kaulakis B. P. Energy exchange in Rydberg-molecule inelastic collisions, Liet. Fiz.
Rink., 28 (3), p.386-388 (1988) [Engl. tr.: Sov. Phys.- Coll., 28 (3) (1988)].
- Kaulakis B. P. Inelastic processes when highly excited atoms collide with molecules,
Khim. Fiz., 7, p.1443-1450 (1988) [Engl. tr.: Sov. J. Chem. Phys., 7 (11),
2585-2599 (1991)].
- Hermann G., Kaulakys B. and Udem T. Theoretical approach
for collisional depolarization of Rydberg atoms, Z.
Phys. D, 28, p.119-122 (1993); PDF.
- Kaulakys B. and Serapinas P. Resent studies of interaction and collisions between
Rydberg atoms and neutral perturbers, Spectral Line Shapes, Vol.5 (9th Intern.
Conf. on Spectral Line Shapes, July 25-29, 1988, Torun, Inv. Papers), Ossolineum, Wroclaw,
1989, p.437-458.
- Kaulakys B. P. and Serapinas P. D. Spectroscopic studies of interaction between Rydberg
atoms and neutral atomic particles (survey), Liet. Fiz. Rink., 24 (3), p.3-37 (1984)
[Engl. tr.: Sov. Phys.-Coll., 24 (3), 1-30 (1984)].
- Kaulakys B. P. Theory of collisional excitation transfer between Rydberg states of
atoms: the noninertial mechanism, Liet. Fiz. Rink.,22 (1), p.3-12 (1982) [Engl.
tr.: Sov. Phys.-Coll., 22 (1), 1-8 (1982)].
- Kaulakys B. P. Theory of collisional excitation transfer between Rydberg states of
atoms: adiabatic mechanism, Liet. Fiz. Rink.,22 (5), p.22-31 (1982) [Engl. tr.:
Sov. Phys.-Coll., 22 (5), 16-23 (1982)].
- Kaulakys B. P. Transitions between spatially degenerate levels in the quasiclassical
theory of atomic collisions, Liet. Fiz. Rink.,19 (1), p.55-61 (1979) [Engl. tr.:
Sov. Phys.- Coll., 19 (1), 38-42 (1979)].
- Kaulakys B. P. and Presnyakov L. P. Transitions between fine-structure components in
slow collisions of neutral atoms, Kr. Soob. Fiz., No.5, p.3-5 (1977) [Engl. tr.: Sov.
Phys.- Lebedev Inst. Rep., No.5, p.1-4 (1977)].
- Kaulakys B. P. Theory of transitions between fine-structure components in slow atomic
collisions, Lebedev Inst. Preprint, Moscow, No.22, 35pp. (1977).
- Kaulakys B. P. Quantum transitions between near and degenerate levels at slow atomic
collisions, Ph.D. Thesis, Vilnius University, Vilnius, 16+149pp. (1980).
Diffusion-like ionization of Rydberg atoms; diffusive processes
The diffusive mechanism for collisional and black-body radiation induced ionization of
Rydberg atoms is revealed and analyzed. The expressions for the ionization probability and
for the distribution of ionization time are obtained. The theory may be applied for the
chaotic microwave ionization of highly excited atoms, as well.
- Kaulakis B. P. Diffusion ionisation of Rydberg atoms due to
black-body radiation, Pis'ma Zh. Eksp. Teor. Fiz., 47,
p.300-302 (1988) [Engl. tr.: JETP
Lett., 47, 360-362 (1988)]; PDF.
- Kaulakys B. and Švedas V. Collisional ionisation
of high-Rydberg atoms. Diffusive mechanism, J. Phys. B: At. Mol.
Phys., 20, p.L565-L570 (1987); PDF.
- Kaulakys B. and Cižiunas A. A theoretical determination of
the diffusion-like ionisation time of Rydberg atoms, J. Phys. B: At. Mol.
Phys., 20, p.1031-1038 (1987); PDF.
- Kaulakys B. P. Free electron model for inelastic collisions
between neutral atomic particles and Rydberg atoms, Zh. Eksp. Teor.
Fiz., 91, p.391-403 (1986) [Engl. tr.: Sov. Phys.- JETP, 64,
229-235 (1986)]; PDF.
- Gontis V. and Kaulakys B. Stochastic dynamics of hydrogenic
atoms in the microwave field: modelling by maps and quantum
description, J.
Phys. B: At. Mol. Phys., 20, p.5051-5064
(1987); PDF.
- Švedas V. J. and Kaulakys B. P. Measurement of the diffusion coefficient of highly
excited atoms by an ionisation method, Pis'ma Zh. Tekh. Fiz., 14, p.1751-1756
(1988) [Engl. tr.: Sov. Tech. Phys. Lett., 14,
760-762 (1988)].
- Švedas V., Kuprionis Z., Gontis V. and Kaulakys B. Kinetics of diffusive ionisation of
the potassium Rydberg atoms, Intern. Symp. on Resonance Ionisation Spectroscopy (RIS)
and Its Applications, Ispra (Italy), 16-21 Sept., 1990 (Resonance Ionisation
Spectroscopy 1990. Proc. Ed. Parks J E. and Omenetto N., Bristol (UK), Institute of
Physics. p.141-4 (1991).
- Kaulakys B. P. Ciziunas A. R. and Švedas V. J. Diffusion mechanism of collisional
ionisation of Rydberg atoms, Liet. Fiz. Rink., 24 (3), p.48-58 (1984) [Engl.
tr.: Sov. Phys.- Coll., 24(3), 38-46 (1984)].
- Kaulakys B. and Petruškevicius R. J Theoretical
analysis of the kinetics of the collisional ionisation of a dense gas
of Rydberg atoms, Liet. Fiz. Rink., 24 (2), p.11-19
(1984) [Engl. tr.: Sov. Phys.-Coll., 24 (2), 7-13
(1984)].
- Kaulakys B. and Ciziunas A. Diffusive flows. Diffusive mechanism for ionisation
of Rydberg atoms, Preprint Inst. of Physics, Vilnius, 28pp. (1985).
Properties of Rydberg atoms; highly excited atomic states; matrix elements
Consistent analytical expressions for the quasi-classical dipole matrix elements in the
velocity and length forms are obtained. The relationship between the energy change of the
classical atom in microwave field and peculiarities of the dipole matrix elements is
revealed.
- Kaulakys B. Consistent analytical approach for the
quasi-classical radial dipole matrix elements, J. Phys. B: Atom. Molec. Opt. Phys.,
28 (23), p.4963-4971 (1995); physics/9610018; PDF.
- Kaulakys B. Quasiclassical dipole matrix elements for high
atomic states and stochastic dynamics of hydrogen atoms in microwave
fields, J.
Phys.B: At. Mol. Opt. Phys., 24,
p.571-585 (1991); PDF.
- Gontis V. and Kaulakys B. Quasi-classical transition amplitudes for one-dimensional atom
in harmonic field, Lith. J. Phys., 31 (2), p.75-78 (1991).
- Alaburda M., Gontis V., Kaulakys B. Klasikinio vandenilio atomo trikdymas ir chaotine
dinamika elektromagnetiniame lauke, 33-oji Lietuvos nacionaline fizikos konferencija, Vilnius,
1999 m. rugsejo 16-18 d., Tezes, p.292-293.
- Kaulakys B. Collisional, dynamic and kinetic peculiarities of Rydberg atoms, Hab. Dr.
Thesis, Institute of Physics, Semiconductor
Physics Institute and Institute of Theoretical Physics
and Astronomy, Vilnius, 62pp.+ supplements (1994).
[Home]
[CV
lithuanian] [CV english]
[Main
publications] [Publications by Subjects]