Theory of 1/f noise, modeling flicker noise, econophysics, physics of finance and physics of risk

1/f noise ("one-over-f noise", occasionally called "flicker noise" or "pink noise") is a type of noise whose power spectra P(f) as a function of the frequency f behaves like: P(f) = 1/fd , where the exponent d is close to 1. The omnipresence of 1/f noise (one of the oldest puzzles in contemporary physics) has led to presumptions that there might exist some generic mechanism underlying production of 1/f noise.

Here, considering currents and signals consisting of a sequence of pulses, it is shown that intrinsic origin of 1/f noise is a random walk of the average time between subsequent pulses of the pulse sequence, or inter-event time. The conclusion that 1/f noise may result from the clustering of the signal pulses, elementary events, or particles can be drawn from the analysis of the model systems. Further we derive and analyze stochastic nonlinear differential equations generating 1/f β noise and apply the models for the financial and other systems.

  1. J. Ruseckas and B. Kaulakys, Intermittency in relation with 1/f noise and stochastic differential equations, Chaos 23 023102 (2013); doi:10.1063/1.4802429; PDF.
  2. J. Ruseckas, V. Gontis, and B. Kaulakys, Nonextensive statistical mechanics distributions and dynamics of financial observables from the nonlinear stochastic differential equations, Advances in Complex Systems 15 Suppl. 1, 1250073 (2012); doi:10.1142/S0219525912500737; PDF.
  3. J. Ruseckas, B. Kaulakys and V. Gontis, Herding model and 1/f noise, EPL 96 60007 (2011); doi:10.1209/0295-5075/96/60007; PDF.
  4. J. Ruseckas and B. Kaulakys, Tsallis distributions and 1/f noise from nonlinear stochastic differential equations, Phys. Rev. E 84 051125 (2011); doi:10.1103/PhysRevE.84.051125; PDF.
  5. Alaburda M. and Kaulakys B. Simulation of bursting, rare and extreme events by nonlinear stochastic differential equations, Dynamics of Socio-Economic Systems 2 (2) p.175-182
  6. B. Kaulakys and J. Ruseckas, Solutions of nonlinear stochastic differential equations with 1/f noise power spectrum, IEEE Conferences: Noise and Fluctuations (ICNF), 2011 21st International Conference on, p. 192-195 (2011); doi:10.1109/ICNF.2011.5994297; PDF.
  7. B. Kaulakys and M. Alaburda, Modeling the inverse cubic distributions by nonlinear stochastic differential equations, IEEE Conferences: Noise and Fluctuations (ICNF), 2011 21st International Conference on, p. 499-502 (2011); doi:10.1109/ICNF.2011.5994380; PDF.
  8. J. Ruseckas and B. Kaulakys, 1/f noise from nonlinear stochastic differential equations, Phys. Rev. E 81 031105 (2010); doi:10.1103/PhysRevE.81.031105; PDF.
  9. B. Kaulakys, M. Alaburda and V. Gontis, Modeling scaled processes and clustering of events by the nonlinear stochastic differential equations, ICNF 2009, AIP Conf. Proc. 1129, p. 13-16 (2009); PDF; doi:10.1063/1.3140414.
  10. V. Gontis, B. Kaulakys and J. Ruseckas, Nonlinear stochastic differential equation as the background of financial fluctuations, ICNF 2009, AIP Conf. Proc. 1129, p. 563-566 (2009); PDF; doi:10.1063/1.3140536.
  11. B. Kaulakys, M. Alaburda, V. Gontis, and J. Ruseckas, Modeling long-memory processes by stochastic difference equations and superstatistical approach, Brazilian Journal of Physics 39 (2A), p. 453-456 (2009); PDF.
  12. B. Kaulakys and M. Alaburda, Modeling scaled processes and 1/fβ noise using nonlinear stochastic differential equations, J. Stat. Mech. P02051 (2009); doi:10.1088/1742-5468/2009/02/P02051; PDF.
  13. Gontis V., Kaulakys B. and Ruseckas J. Trading activity as driven Poisson process: comparison with empirical data, Physica A 387 (15) p. 3891-3896 (2008); doi:10.1016/j.physa.2008.02.078; arXiv.org/abs/0710.1439; [physics.soc-ph]; PDF.
  14. Kaulakys B., Gontis V. and Alaburda M., Point process model of 1/f noise vs a sum of Lorentzians, Phys. Rev. E 71 (5) 051105 (2005); doi:10.1103/PhysRevE.71.051105; e-Print cond-mat/0504025; PDF.
  15. Kaulakys B., Ruseckas J., Gontis V. and Alaburda M. Nonlinear stochastic models of 1/f noise and power-law distributions, Physica A 365 p.217-221 (2006); doi:10.1016/j.physa.2006.01.017; cond-mat/0509626; PDF.
  16. Gontis V. and Kaulakys B. Modeling long-range memory trading activity by stochastic differential equations, Physica A 382 (1) p.114-120 (2007); doi:10.1016/j.physa.2007.02.012; physics/0608036; PDF.
  17. Kaulakys B., Alaburda M. and Ruseckas J. Modeling Non-Gaussian 1/f noise by the stochastic differential equations, NOISE AND FLUCTUATIONS: 19th International Conference on Noise and Fluctuations - ICNF 2007, AIP Conf. Proc. 922, p. 439- 442 (2007); doi:10.1063/1.2759716; PDF.
  18. Kaulakys B., Alaburda M. and Gontis V. Point Processes Modeling of time series exhibiting power-law statistics, NOISE AND FLUCTUATIONS: 19th International Conference on Noise and Fluctuations - ICNF 2007, AIP Conf. Proc. 922, p.535-538 (2007); doi:10.1063/1.2759736; PDF.
  19. Gontis V. and Kaulakys B. Multiplicative point process as a model of trading activity, Physica A A 343 p.505-514 (2004); PDF.
  20. Gontis V. and Kaulakys B. Modelling financial markets by the multiplicative sequence of trades, Physica A 344 (1-2) p.128-133 (2004); PDF.
  21. Kaulakys B. and Ruseckas J. Stochastic nonlinear differential equation generating 1/f noise, Phys. Rev. E (Rapid Communication) 70 (2) 020101 (2004); cond-mat/0408507; PDF.
  22. Gontis V., Kaulakys B., Alaburda M. and Ruseckas J. Evolution of complex systems and 1/f noise: from physics to financial markets, Solid State Phenomena 97-98 p.65-70 (2004); PDF.
  23. Ruseckas J., Kaulakys B. and Alaburda M. Modelling of 1/f noise by sequences of stochastic pulses of different duration, Lith. J. Phys. 43 (4) p.223-228 (2003).
  24. Kaulakys B. On the inherent origin of 1/f noise, Lith. J. Phys. 40 (4) p.281-286 (2000).
  25. Kaulakys B. and Meškauskas T. Models for generation of 1/f noise, Microelectronics Reliability 40 (11), p.1781-1785 (2000); PDF.
  26. Kaulakys B. On the intrinsic origin of 1/f noise, Microelectronics Reliability 40 (11), p.1787-1790 (2000); PDF.
  27. Kaulakys B. Autoregressive model of 1/f noise, Phys. Letters A 257 (1-2) p.37-42 (1999); adap-org/9907008; PDF.
  28. Kaulakys B. and Meškauskas T. Modeling 1/f noise, Phys. Rev. E 58 (6), p.7013-7019 (1998); adap-org/9812003; PDF.
  29. Kaulakys B. Simple model of 1/f noise (1998), e-print archives: adap-org/9806004.
  30. Kaulakys B. and Meškauskas T. Models for generation of 1/f noise, In: Noise in Physical Systems and 1/f Fluctuations, Proc. 15th Intern. Confer., Bentham Press, London, 1999, p.375-378.
  31. Kaulakys B. On the intrinsic origin of 1/f noise, ibid, p.467-470.
  32. Kaulakys B. and Meškauskas T. On the generation and origin of 1/f noise, Nonlinear Analysis: Modelling and Control, Vol. 4, p. 87-95 (1999); PDF.
  33. Bastys A. and Kaulakys B. Long-memory processes with 1/f spectrum, 7th Vilnius Conf. on Probab. Theory and 22nd European Meeting of Statisticians, Vilnius, August 12-18, 1998, Abstracts (Vilnius, TEV, 1998), p.144.
  34. Kaulakys B. and Meškauskas T. On the generation and origin of 1/f noise, ibid, p. 265.
  35. Kaulakys B. and Meškauskas T. On the 1/f fluctuations in the nonlinear systems affected by noise, In: Noise in Physical Systems and 1/f Fluctuations, Proc. 14th Intern. Confer., World Scientific, Singapore, 1997, p.126-129; adap-org/9806002 .
  36. Kaulakys B. and Vektaris G. Transition to nonchaotic behaviour in randomly driven systems: intermittency and 1/f-noise, In: Noise in Physical Systems and 1/f Fluctuations, Proc. 13th Intern. Confer., World Scientific, Singapore, 1995, p.677-680.
  37. Kaulakys B. Vidine 1/f triukšmo kilme, 33-oji Lietuvos nacionaline fizikos konferencija, Vilnius, 1999 m. rugsejo 16-18 d., Tezes, p.319.

    Synchronization of chaotic systems driven by identical noise

Transition to nonchaotic behavior and synchronization of ensemble of chaotic systems driven by identical random forces are analyzed.

 

  1. Kaulakys B., Ivanauskas F. and Meškauskas T. Synchronization of chaotic systems driven by identical noise, Intern. J. Bifurcation and Chaos 9 (3) p.533-539 (1999); chao-dyn/9906001; PDF.
  2. Kaulakys B. and Vektaris G. Transition to nonchaotic behaviour in a Brownian-type motion, Phys. Rev. E, 52 (2), p.2091-2094 (1995); and e-print archives: abs/chao-dyn/9504009; PDF.
  3. Kaulakys B. and Vektaris G. Transition to nonchaotic behaviour in randomly driven systems: intermittency and 1/f-noise, In: Noise in Physical Systems and 1/f Fluctuations, Proc. 13th Intern. Confer., World Scientific, Singapore, 1995, p.677-680.
  4. Kaulakys B. Maps for analysis of nonlinear dynamics, Nonlinear Analysis: Modelling and Control, Vol. 2, p.43-58 (1998); chao-dyn/9809016 .
  5. Kaulakys B., Ivanauskas F. and Meškauskas T. Synchronization in the identically driven systems, Proc. of the Intern. Conf. on Nonlinearity, Bifurcation and Chaos: the Doors to the Future, Lodz-Dobiesckow, Sept. 16-18, 1996, p.145-148; chao-dyn/9610020 .
  6. Ivanauskas F., Meškauskas T. and Kaulakys B. Solution of the equations of dynamical chaos, New Trends in Probability and Statistics, Vol. 4, Analytical and Probabilistic Methods in Number Theory, Proc. of the Second Intern. Conf., (23-27 Sept., 1996, Palanga, Lithuania), Eds. A. Laurincikas et al., VPS/TEV, Vilnius, 1997, p.467-474.
  7. Ivanauskas F., Meškauskas T. and Kaulakys B. Synchronizing influence of identical noise in chaotic systems, Lietuvos matematiku draugijos XXXVIII konferencijos darbai, Vilnius, 1997 m. birželio 18-19, p.268-273.
  8. Kaulakys B. Chaosas klasikineje ir kvantineje dinamikoje, Netiesiniai procesai: modeliavimas ir valdymas (Nonlinear Analysis: Modelling and Control), Vilnius, MII, 1997, No. 1, p.47-53.

   

Chaotic dynamics and ionization of atoms in microwave field

Mapping equations of motion (Kepler map) of the highly excited atom in microwave field are derived and analyzed for large range of parameters of the problem.  

  1. Alaburda M., Gontis V. and Kaulakys B. Interaction and chaotic dynamics of the classical hydrogen atom in an electromagnetic field, Lith. J. Phys. 40 (4) p.242-247 (2000).
  2. Kaulakys B. and Vilutis G. Kepler map, Physica Scripta 59 (4), p. 251-256 (1999); chao-dyn/9904022; PDF.
  3. Kaulakys B., Grauzhinis D. and Vilutis G. Modelling by maps of two-frequency microwave ionization of hydrogen atoms, Europhys. Lett., 43 (2), p.123-128 (1998); physics/9808048; PDF.
  4. Gontis V. and Kaulakys B. Stochastic dynamics of hydrogenic atoms in the microwave field: modelling by maps and quantum description, J. Phys. B: At. Mol. Phys., 20, p.5051-5064 (1987); PDF.
  5. Kaulakys B., Gontis V., Hermann G. and Scharmann A. Scaling relations for the hydrogen atom in a harmonic field: classical chaos and quantum suppression of diffusion, Phys. Letters A, 159, p.261-265 (1991); PDF.
  6. Kaulakys B. Quasiclassical dipole matrix elements for high atomic states and stochastic dynamics of hydrogen atoms in microwave fields, J. Phys.B: At. Mol. Opt. Phys., 24, p.571-585 (1991); PDF.
  7. Kaulakys B. Consistent analytical approach for the quasi-classical radial dipole matrix elements, J. Phys. B: Atom. Molec. Opt. Phys., 28 (23), p.4963-4971 (1995); physics/9610018; PDF.
  8. Kaulakys B. Scaling analysis for chaotic ionisation of excited hydrogen atoms in microwave field, Acta Phys. Polonica B, 23, p.313-316 (1992).
  9. Kaulakys B. and Cižiunas A. A theoretical determination of the diffusion-like ionisation time of Rydberg atoms, J. Phys. B: At. Mol. Phys., 20, p.1031-1038 (1987); PDF.
  10. Kaulakys B. and Vilutis G. Ionization of Rydberg atoms in a low frequency field: modelling by maps of transition to chaotic behaviour, In: Chaos - The Interplay Between Stochastic and Deterministic Behaviour, Proc. Karpacz'95, Ed. by P.Garbaczewski et al, Springer-Verlag, Berlin 1995, pp.445-450; chao-dyn/9503011 .
  11. Kaulakys B. and Vilutis G. Rydberg atoms ionisation by microwave field and electromagnetic pulses, Resonance Ionization Spectroscopy 1994 (Proc. 7th Intern. Symp., Bernkastel-Kues (Germany), 3-8 July, 1994), AIP Conf. Proc. 329, AIP, New York, 1995, p.389-392; e-print archives: quant-ph/9504007 .
  12. Kaulakys B., Gontis V. and Vilutis G. Ionisation of Rydberg atoms by subpicosecond electromagnetic pulses, Lithuanian J. Phys., 33 (5-6), p.354-357 (1993); Lithuanian Phys. J. (Allerton Press), 33 (5-6), p.290-293 (1993).
  13. Gontis V. and Kaulakys B. Quasi-classical transition amplitudes for one-dimensional atom in harmonic field, Lith. J. Phys., 31 (2), p.75-78 (1991).
  14. Gontis V. G. and Kaulakys B. P. Quasi-classical maps for one-dimensional systems with periodic perturbation. Atom in microwave field, Liet. Fiz. Rink., 28, p.671-678 (1988) [Engl. tr.: Sov. Phys.- Coll., 28 (6), 1-6 (1988)].
  15. Gontis V. G. and Kaulakys B. P. The stochastic dynamics of a highly excited hydrogen-like atom in a low frequency field, Liet. Fiz. Rink., 27 (3), p.368-370 (1987) [Engl. tr.: Sov. Phys.- Coll. 27 (3), 111-113 (1987)].
  16. Gontis V. G. and Kaulakys B. P. The stochastic dynamics of a highly excited hydrogen-like atom in a low frequency field, Deposited in VINITI as No.5087- V86, 25pp. (1986).
  17. Alaburda M., Gontis V., Kaulakys B. Klasikinio vandenilio atomo trikdymas ir chaotine dinamika elektromagnetiniame lauke, 33-oji Lietuvos nacionaline fizikos konferencija, Vilnius, 1999 m. rugsejo 16-18 d., Tezes, p.292-293.

 

Quantum measurement, quantum Zeno effect and quantum anti-Zeno effect

Consequence of the repetitive frequent measurement of the system's state (or random perturbations of the system) on the quantum dynamics is analyzed. The essences of the prevention of quantum dynamics (quantum Zeno effect) and restoration of the time evolution (quantum anti-Zeno effect) are revealed.

 

  1. Ruseckas J. and Kaulakys B. Quantum trajectory method for the quantum Zeno and anti-Zeno effects, Phys. Rev. A 73 (5) 052101 (2006); doi:10.1103/PhysRevA.73.052101; quant-ph/0605022; PDF.
  2. Ruseckas J. and Kaulakys B. Time problem in quantum mechanics and its analysis by the concept of weak measurement, Lith. J. Phys. 44 (2) p.161-182 (2004); quant-ph/0409006.
  3. Ruseckas J. and Kaulakys B. General expression for the quantum Zeno and anti-Zeno effects, Phys. Rev.A 69 (3) 032104, 6 pp. (2004); quant-ph/0403123; PDF.
  4. Ruseckas J. and Kaulakys B. Weak measurement of arrival time, Phys. Rev.A 66 (5) 052106 (2002); quant-ph/0307006; PDF.
  5. Ruseckas J. and Kaulakys B. Time problem in quantum mechanics and weak measurements, Phys. Lett. A 287 (5-6) p.297-303 (2001); PDF.
  6. Ruseckas J. and Kaulakys B. Real measurements and the quantum Zeno effect, Phys. Rev.A 63 (6) 062103 (2001); PDF.
  7. Kaulakys B. and Gontis V. Quantum anti-Zeno effect, Phys. Rev. A, 56 (2), p.1138-1141 (1997); quant-ph/9708024; PDF.
  8. Gontis V. and Kaulakys B. Quantum Zeno and quantum anti-Zeno effects, Lith. J. Phys., 38 (1), p.118-121 (1998); quant-ph/9806015.
  9. Kaulakys B. Dynamical peculiarities of nonlinear quasiclassical systems, Lith. J. Phys., 36 (4), p.343-345 (1996); quant-ph/9610041.
  10. Gontis V. and Kaulakys B. Quantum dynamics of simple and complex systems affected by repeated measurement, J. Tech. Phys. (Poland), 38 (2), p.223-226 (1997).
  11. Kaulakys B. Maps for analysis of nonlinear dynamics, Nonlinear Analysis: Modelling and Control, Vol. 2, p.43-58 (1998); chao-dyn/9809016.
  12. Kaulakys B. Quantum dynamics with intermediate measurements in agreement with the classical dynamics, Proc. Intern. Workshop ‘Quantum Systems: New Trends and Methods’, (June 3-7, 1996, Minsk, Belarus), Eds. Y. S. Kim et al., World Scientific, Singapore, 1997, p.46-50; quant-ph/9610019.
  13. Kaulakys B. On the quantum evolution of chaotic systems affected by repeated frequent measurement, Quantum Communications and Measurement, Ed. V.P.Belavkin et al, Plenum Press, London, 1995, p.193-197; quant-ph/9503018.
  14. Kaulakys B. Matavimu itaka sistemu evoliucijai, IX Pasaulio lietuviu mokslo ir kurybos simpoziumas, Vilnius, 1995 m. lapkricio 22-25 d.d. Tezes, p.80.
  15. Gontis V. ir Kaulakys B. Kvantinis Zenono ir kvantinis anti-Zenono efektai, 32-oji Lietuvos nacionaline fizikos konferencija, Vilnius, 1997 m. spalio 8-10 d., Tezes, p.97-98.

 

Collisional broadening and shift of Rydberg levels

Analytical expressions for the Rydberg levels broadening and shift are obtained. The relation between the broadening and shift of the Rydberg levels and the resonance in the scattering of slow Rydberg electron by perturbing atoms are revealed.

 

  1. Hermann G., Kaulakys B. and Mahr G. Rare-gas-induced broadening and shift of two-photon transitions to intermediate (n = 9-14) Rydberg states of atomic thallium, Eur. Phys. J. D, 1 (2), p.129-137 (1998); PDF.
  2. Kaulakys B. Broadening and shift of Rydberg levels by elastic collisions with rare-gas atoms, J. Phys. B: At. Mol. Phys., 17, p.4485-4497 (1984); PDF.
  3. Kaulakys B. Position and width of the resonance in the electron-potassium scattering from self-broadening of Rydberg states, J. Phys. B: At. Mol. Phys., 15, p.L719-L722 (1982); PDF.
  4. Kaulakis B. P., Presnyakov L. P. and Serapinas P. D. On the possibility of studying autoionization states of negative ions in terms of the broadening and displacement of the Rydberg series of neutral atoms, Pis'ma Zh. Eksp. Teor. Fiz., 30, p.60-63 (1979) [Engl. tr.: JETP Lett., 30, 53-55 (1980)]; PDF.
  5. Kaulakis B. P. Relation between the broadening of Rydberg levels and resonances in the scattering of slow electrons by atoms, Opt. Spektrosk., 48, p.1047-1053 (1980) [Engl. tr.: Opt. Spectrosc., 48, 574-577 (1980)]; PDF.
  6. Hermann G., Kaulakys B., Lasnitschka G., Mahr G. and Scharmann A. Dependence of collisional broadening and shift of Rydberg levels on the angular momentum of the state, J. Phys. B: At. Mol. Opt. Phys., 25, p.L407-L413 (1992); PDF.
  7. Hermann G., Kaulakys B. and Udem T. Theoretical approach for collisional depolarization of Rydberg atoms, Z. Phys. D, 28, p.119-122 (1993); PDF.
  8. Kaulakys B. and Serapinas P. Resent studies of interaction and collisions between Rydberg atoms and neutral perturbers, Spectral Line Shapes, Vol.5 (9th Intern. Conf. on Spectral Line Shapes, July 25-29, 1988, Torun, Inv. Papers), Ossolineum, Wroclaw, 1989, p.437-458.
  9. Kaulakys B. P. and Serapinas P. D. Spectroscopic studies of interaction between Rydberg atoms and neutral atomic particles (survey), Liet. Fiz. Rink., 24 (3), p.3-37 (1984) [Engl. tr.: Sov. Phys.-Coll., 24 (3), 1-30 (1984)].
  10. Kaulakys B. P. Analysis of the validity criteria of modern methods for high-temperature plasma diagnostics, Proc. of Moscow Institute of Physics and Technology, No.8, p.108-115 (1976).

 

Inelastic collisions of Rydberg atoms with neutral atomic particles

Free electron model and other analytical descriptions for inelastic collisions between neural atomic particles (atoms or molecules) and Rydberg atoms are developed. The results are applicable for the astrophysical modeling.

 

  1. Kaulakys B. Free electron model for collisional angular momentum mixing of high Rydberg atoms, J. Phys. B: At. Mol. Opt. Phys., 24, p.L127-L132 (1991); PDF.
  2. Kaulakys B. Analytical expressions for cross sections of Rydberg-neutral inelastic collisions, J. Phys. B: At. Mol. Phys., 18, p.L167-L170 (1985); PDF.
  3. Kaulakys B. P. Free electron model for inelastic collisions between neutral atomic particles and Rydberg atoms, Zh. Eksp. Teor. Fiz., 91, p.391-403 (1986) [Engl. tr.: Sov. Phys.- JETP, 64, 229-235 (1986)]; PDF.
  4. Kaulakis B. P. Energy exchange in Rydberg-molecule inelastic collisions, Liet. Fiz. Rink., 28 (3), p.386-388 (1988) [Engl. tr.: Sov. Phys.- Coll., 28 (3) (1988)].
  5. Kaulakis B. P. Inelastic processes when highly excited atoms collide with molecules, Khim. Fiz., 7, p.1443-1450 (1988) [Engl. tr.: Sov. J. Chem. Phys., 7 (11), 2585-2599 (1991)].
  6. Hermann G., Kaulakys B. and Udem T. Theoretical approach for collisional depolarization of Rydberg atoms, Z. Phys. D, 28, p.119-122 (1993); PDF.
  7. Kaulakys B. and Serapinas P. Resent studies of interaction and collisions between Rydberg atoms and neutral perturbers, Spectral Line Shapes, Vol.5 (9th Intern. Conf. on Spectral Line Shapes, July 25-29, 1988, Torun, Inv. Papers), Ossolineum, Wroclaw, 1989, p.437-458.
  8. Kaulakys B. P. and Serapinas P. D. Spectroscopic studies of interaction between Rydberg atoms and neutral atomic particles (survey), Liet. Fiz. Rink., 24 (3), p.3-37 (1984) [Engl. tr.: Sov. Phys.-Coll., 24 (3), 1-30 (1984)].
  9. Kaulakys B. P. Theory of collisional excitation transfer between Rydberg states of atoms: the noninertial mechanism, Liet. Fiz. Rink.,22 (1), p.3-12 (1982) [Engl. tr.: Sov. Phys.-Coll., 22 (1), 1-8 (1982)].
  10. Kaulakys B. P. Theory of collisional excitation transfer between Rydberg states of atoms: adiabatic mechanism, Liet. Fiz. Rink.,22 (5), p.22-31 (1982) [Engl. tr.: Sov. Phys.-Coll., 22 (5), 16-23 (1982)].
  11. Kaulakys B. P. Transitions between spatially degenerate levels in the quasiclassical theory of atomic collisions, Liet. Fiz. Rink.,19 (1), p.55-61 (1979) [Engl. tr.: Sov. Phys.- Coll., 19 (1), 38-42 (1979)].
  12. Kaulakys B. P. and Presnyakov L. P. Transitions between fine-structure components in slow collisions of neutral atoms, Kr. Soob. Fiz., No.5, p.3-5 (1977) [Engl. tr.: Sov. Phys.- Lebedev Inst. Rep., No.5, p.1-4 (1977)].
  13. Kaulakys B. P. Theory of transitions between fine-structure components in slow atomic collisions, Lebedev Inst. Preprint, Moscow, No.22, 35pp. (1977).
  14. Kaulakys B. P. Quantum transitions between near and degenerate levels at slow atomic collisions, Ph.D. Thesis, Vilnius University, Vilnius, 16+149pp. (1980).

 

Diffusion-like ionization of Rydberg atoms; diffusive processes

The diffusive mechanism for collisional and black-body radiation induced ionization of Rydberg atoms is revealed and analyzed. The expressions for the ionization probability and for the distribution of ionization time are obtained. The theory may be applied for the chaotic microwave ionization of highly excited atoms, as well.

 

  1. Kaulakis B. P. Diffusion ionisation of Rydberg atoms due to black-body radiation, Pis'ma Zh. Eksp. Teor. Fiz., 47, p.300-302 (1988) [Engl. tr.: JETP Lett., 47, 360-362 (1988)]; PDF.
  2. Kaulakys B. and Švedas V. Collisional ionisation of high-Rydberg atoms. Diffusive mechanism, J. Phys. B: At. Mol. Phys., 20, p.L565-L570 (1987); PDF.
  3. Kaulakys B. and Cižiunas A. A theoretical determination of the diffusion-like ionisation time of Rydberg atoms, J. Phys. B: At. Mol. Phys., 20, p.1031-1038 (1987); PDF.
  4. Kaulakys B. P. Free electron model for inelastic collisions between neutral atomic particles and Rydberg atoms, Zh. Eksp. Teor. Fiz., 91, p.391-403 (1986) [Engl. tr.: Sov. Phys.- JETP, 64, 229-235 (1986)]; PDF.
  5. Gontis V. and Kaulakys B. Stochastic dynamics of hydrogenic atoms in the microwave field: modelling by maps and quantum description, J. Phys. B: At. Mol. Phys., 20, p.5051-5064 (1987); PDF.
  6. Švedas V. J. and Kaulakys B. P. Measurement of the diffusion coefficient of highly excited atoms by an ionisation method, Pis'ma Zh. Tekh. Fiz., 14, p.1751-1756 (1988) [Engl. tr.: Sov. Tech. Phys. Lett., 14, 760-762 (1988)].
  7. Švedas V., Kuprionis Z., Gontis V. and Kaulakys B. Kinetics of diffusive ionisation of the potassium Rydberg atoms, Intern. Symp. on Resonance Ionisation Spectroscopy (RIS) and Its Applications, Ispra (Italy), 16-21 Sept., 1990 (Resonance Ionisation Spectroscopy 1990. Proc. Ed. Parks J E. and Omenetto N., Bristol (UK), Institute of Physics. p.141-4 (1991).
  8. Kaulakys B. P. Ciziunas A. R. and Švedas V. J. Diffusion mechanism of collisional ionisation of Rydberg atoms, Liet. Fiz. Rink., 24 (3), p.48-58 (1984) [Engl. tr.: Sov. Phys.- Coll., 24(3), 38-46 (1984)].
  9. Kaulakys B. and Petruškevicius R. J Theoretical analysis of the kinetics of the collisional ionisation of a dense gas of Rydberg atoms, Liet. Fiz. Rink., 24 (2), p.11-19 (1984) [Engl. tr.: Sov. Phys.-Coll., 24 (2), 7-13 (1984)].
  10. Kaulakys B. and Ciziunas A. Diffusive flows. Diffusive mechanism for ionisation of Rydberg atoms, Preprint Inst. of Physics, Vilnius, 28pp. (1985).

 

Properties of Rydberg atoms; highly excited atomic states; matrix elements

Consistent analytical expressions for the quasi-classical dipole matrix elements in the velocity and length forms are obtained. The relationship between the energy change of the classical atom in microwave field and peculiarities of the dipole matrix elements is revealed.

 

  1. Kaulakys B. Consistent analytical approach for the quasi-classical radial dipole matrix elements, J. Phys. B: Atom. Molec. Opt. Phys., 28 (23), p.4963-4971 (1995); physics/9610018; PDF.
  2. Kaulakys B. Quasiclassical dipole matrix elements for high atomic states and stochastic dynamics of hydrogen atoms in microwave fields, J. Phys.B: At. Mol. Opt. Phys., 24, p.571-585 (1991); PDF.
  3. Gontis V. and Kaulakys B. Quasi-classical transition amplitudes for one-dimensional atom in harmonic field, Lith. J. Phys., 31 (2), p.75-78 (1991).
  4. Alaburda M., Gontis V., Kaulakys B. Klasikinio vandenilio atomo trikdymas ir chaotine dinamika elektromagnetiniame lauke, 33-oji Lietuvos nacionaline fizikos konferencija, Vilnius, 1999 m. rugsejo 16-18 d., Tezes, p.292-293.
  5. Kaulakys B. Collisional, dynamic and kinetic peculiarities of Rydberg atoms, Hab. Dr. Thesis, Institute of Physics, Semiconductor Physics Institute and Institute of Theoretical Physics and Astronomy, Vilnius, 62pp.+ supplements (1994).

[Home]       [CV lithuanian]      [CV english]       [Main publications]      [Publications by Subjects]